Cargando…

Unsupervised real-world knowledge extraction via disentangled variational autoencoders for photon diagnostics

We present real-world data processing on measured electron time-of-flight data via neural networks. Specifically, the use of disentangled variational autoencoders on data from a diagnostic instrument for online wavelength monitoring at the free electron laser FLASH in Hamburg. Without a-priori knowl...

Descripción completa

Detalles Bibliográficos
Autores principales: Hartmann, Gregor, Goetzke, Gesa, Düsterer, Stefan, Feuer-Forson, Peter, Lever, Fabiano, Meier, David, Möller, Felix, Vera Ramirez, Luis, Guehr, Markus, Tiedtke, Kai, Viefhaus, Jens, Braune, Markus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715554/
https://www.ncbi.nlm.nih.gov/pubmed/36456706
http://dx.doi.org/10.1038/s41598-022-25249-4
_version_ 1784842475625512960
author Hartmann, Gregor
Goetzke, Gesa
Düsterer, Stefan
Feuer-Forson, Peter
Lever, Fabiano
Meier, David
Möller, Felix
Vera Ramirez, Luis
Guehr, Markus
Tiedtke, Kai
Viefhaus, Jens
Braune, Markus
author_facet Hartmann, Gregor
Goetzke, Gesa
Düsterer, Stefan
Feuer-Forson, Peter
Lever, Fabiano
Meier, David
Möller, Felix
Vera Ramirez, Luis
Guehr, Markus
Tiedtke, Kai
Viefhaus, Jens
Braune, Markus
author_sort Hartmann, Gregor
collection PubMed
description We present real-world data processing on measured electron time-of-flight data via neural networks. Specifically, the use of disentangled variational autoencoders on data from a diagnostic instrument for online wavelength monitoring at the free electron laser FLASH in Hamburg. Without a-priori knowledge the network is able to find representations of single-shot FEL spectra, which have a low signal-to-noise ratio. This reveals, in a directly human-interpretable way, crucial information about the photon properties. The central photon energy and the intensity as well as very detector-specific features are identified. The network is also capable of data cleaning, i.e. denoising, as well as the removal of artefacts. In the reconstruction, this allows for identification of signatures with very low intensity which are hardly recognisable in the raw data. In this particular case, the network enhances the quality of the diagnostic analysis at FLASH. However, this unsupervised method also has the potential to improve the analysis of other similar types of spectroscopy data.
format Online
Article
Text
id pubmed-9715554
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-97155542022-12-03 Unsupervised real-world knowledge extraction via disentangled variational autoencoders for photon diagnostics Hartmann, Gregor Goetzke, Gesa Düsterer, Stefan Feuer-Forson, Peter Lever, Fabiano Meier, David Möller, Felix Vera Ramirez, Luis Guehr, Markus Tiedtke, Kai Viefhaus, Jens Braune, Markus Sci Rep Article We present real-world data processing on measured electron time-of-flight data via neural networks. Specifically, the use of disentangled variational autoencoders on data from a diagnostic instrument for online wavelength monitoring at the free electron laser FLASH in Hamburg. Without a-priori knowledge the network is able to find representations of single-shot FEL spectra, which have a low signal-to-noise ratio. This reveals, in a directly human-interpretable way, crucial information about the photon properties. The central photon energy and the intensity as well as very detector-specific features are identified. The network is also capable of data cleaning, i.e. denoising, as well as the removal of artefacts. In the reconstruction, this allows for identification of signatures with very low intensity which are hardly recognisable in the raw data. In this particular case, the network enhances the quality of the diagnostic analysis at FLASH. However, this unsupervised method also has the potential to improve the analysis of other similar types of spectroscopy data. Nature Publishing Group UK 2022-12-01 /pmc/articles/PMC9715554/ /pubmed/36456706 http://dx.doi.org/10.1038/s41598-022-25249-4 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Hartmann, Gregor
Goetzke, Gesa
Düsterer, Stefan
Feuer-Forson, Peter
Lever, Fabiano
Meier, David
Möller, Felix
Vera Ramirez, Luis
Guehr, Markus
Tiedtke, Kai
Viefhaus, Jens
Braune, Markus
Unsupervised real-world knowledge extraction via disentangled variational autoencoders for photon diagnostics
title Unsupervised real-world knowledge extraction via disentangled variational autoencoders for photon diagnostics
title_full Unsupervised real-world knowledge extraction via disentangled variational autoencoders for photon diagnostics
title_fullStr Unsupervised real-world knowledge extraction via disentangled variational autoencoders for photon diagnostics
title_full_unstemmed Unsupervised real-world knowledge extraction via disentangled variational autoencoders for photon diagnostics
title_short Unsupervised real-world knowledge extraction via disentangled variational autoencoders for photon diagnostics
title_sort unsupervised real-world knowledge extraction via disentangled variational autoencoders for photon diagnostics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715554/
https://www.ncbi.nlm.nih.gov/pubmed/36456706
http://dx.doi.org/10.1038/s41598-022-25249-4
work_keys_str_mv AT hartmanngregor unsupervisedrealworldknowledgeextractionviadisentangledvariationalautoencodersforphotondiagnostics
AT goetzkegesa unsupervisedrealworldknowledgeextractionviadisentangledvariationalautoencodersforphotondiagnostics
AT dustererstefan unsupervisedrealworldknowledgeextractionviadisentangledvariationalautoencodersforphotondiagnostics
AT feuerforsonpeter unsupervisedrealworldknowledgeextractionviadisentangledvariationalautoencodersforphotondiagnostics
AT leverfabiano unsupervisedrealworldknowledgeextractionviadisentangledvariationalautoencodersforphotondiagnostics
AT meierdavid unsupervisedrealworldknowledgeextractionviadisentangledvariationalautoencodersforphotondiagnostics
AT mollerfelix unsupervisedrealworldknowledgeextractionviadisentangledvariationalautoencodersforphotondiagnostics
AT veraramirezluis unsupervisedrealworldknowledgeextractionviadisentangledvariationalautoencodersforphotondiagnostics
AT guehrmarkus unsupervisedrealworldknowledgeextractionviadisentangledvariationalautoencodersforphotondiagnostics
AT tiedtkekai unsupervisedrealworldknowledgeextractionviadisentangledvariationalautoencodersforphotondiagnostics
AT viefhausjens unsupervisedrealworldknowledgeextractionviadisentangledvariationalautoencodersforphotondiagnostics
AT braunemarkus unsupervisedrealworldknowledgeextractionviadisentangledvariationalautoencodersforphotondiagnostics