Cargando…
Unsupervised real-world knowledge extraction via disentangled variational autoencoders for photon diagnostics
We present real-world data processing on measured electron time-of-flight data via neural networks. Specifically, the use of disentangled variational autoencoders on data from a diagnostic instrument for online wavelength monitoring at the free electron laser FLASH in Hamburg. Without a-priori knowl...
Autores principales: | Hartmann, Gregor, Goetzke, Gesa, Düsterer, Stefan, Feuer-Forson, Peter, Lever, Fabiano, Meier, David, Möller, Felix, Vera Ramirez, Luis, Guehr, Markus, Tiedtke, Kai, Viefhaus, Jens, Braune, Markus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715554/ https://www.ncbi.nlm.nih.gov/pubmed/36456706 http://dx.doi.org/10.1038/s41598-022-25249-4 |
Ejemplares similares
-
Non-invasive online wavelength measurements at FLASH2 and present benchmark
por: Braune, Markus, et al.
Publicado: (2018) -
Photonic unsupervised learning variational autoencoder for high-throughput and low-latency image transmission
por: Chen, Yitong, et al.
Publicado: (2023) -
Sequential Variational Autoencoder with Adversarial Classifier for Video Disentanglement
por: Haga, Takeshi, et al.
Publicado: (2023) -
Unsupervised tagging of semivisible jets with normalized autoencoders in CMS
por: Eble, Florian
Publicado: (2023) -
IRC-Safe Graph Autoencoder for Unsupervised Anomaly Detection
por: Atkinson, Oliver, et al.
Publicado: (2022)