Cargando…
Individual variability in habitat selection by aquatic insects is driven by taxonomy rather than specialisation
Habitat selection, the choice of a habitat based on its perceived quality, is a key mechanism structuring freshwater communities. To date, individual variability in habitat selection has been neglected, and specialisation has never been considered in this type of studies. We examined the individual...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715563/ https://www.ncbi.nlm.nih.gov/pubmed/36456650 http://dx.doi.org/10.1038/s41598-022-25363-3 |
Sumario: | Habitat selection, the choice of a habitat based on its perceived quality, is a key mechanism structuring freshwater communities. To date, individual variability in habitat selection has been neglected, and specialisation has never been considered in this type of studies. We examined the individual differences in the habitat selection of backswimmers (Notonectidae) and diving beetles (Dytiscidae). From each family, we selected one habitat generalist able to coexist with fish (Notonecta glauca, Dytiscus marginalis), and one species specialised to fishless habitats (Notonecta obliqua, Acilius sulcatus). We performed a mesocosm experiment quantifying the consistency in individuals’ decisions in response to fish and vegetation structure, in relation to sex and specialisation. Neither the overall pattern of preferences nor consistency in individuals’ decisions differed between specialists and generalists or between the sexes, but both were consistent within families. At the population level, backswimmers preferred fishless pools with submersed and floating macrophytes, while diving beetles showed no clear preferences. Individual decisions of backswimmers were consistent and likely driven by conspecific/heterospecific attraction. In diving beetles, individual decisions were primarily density-dependent. Our results reinforce the significance of habitat selectivity for aquatic community assembly, while suggesting a range of mechanisms driving variability in individual behaviour. |
---|