Cargando…
Personalised depression forecasting using mobile sensor data and ecological momentary assessment
INTRODUCTION: Digital health interventions are an effective way to treat depression, but it is still largely unclear how patients’ individual symptoms evolve dynamically during such treatments. Data-driven forecasts of depressive symptoms would allow to greatly improve the personalisation of treatme...
Autores principales: | Kathan, Alexander, Harrer, Mathias, Küster, Ludwig, Triantafyllopoulos, Andreas, He, Xiangheng, Milling, Manuel, Gerczuk, Maurice, Yan, Tianhao, Rajamani, Srividya Tirunellai, Heber, Elena, Grossmann, Inga, Ebert, David D., Schuller, Björn W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715619/ https://www.ncbi.nlm.nih.gov/pubmed/36465087 http://dx.doi.org/10.3389/fdgth.2022.964582 |
Ejemplares similares
-
HEAR4Health: a blueprint for making computer audition a staple of modern healthcare
por: Triantafyllopoulos, Andreas, et al.
Publicado: (2023) -
Zero-shot personalization of speech foundation models for depressed mood monitoring
por: Gerczuk, Maurice, et al.
Publicado: (2023) -
Bayesian analysis of Ecological Momentary Assessment (EMA) data collected in adults before and after hearing rehabilitation
por: Leijon, Arne, et al.
Publicado: (2023) -
Is Speech the New Blood? Recent Progress in AI-Based Disease Detection From Audio in a Nutshell
por: Milling, Manuel, et al.
Publicado: (2022) -
Don't Miss the Moment: A Systematic Review of Ecological Momentary Assessment in Suicide Research
por: Kivelä, Liia, et al.
Publicado: (2022)