Cargando…
A hybrid interpretable deep structure based on adaptive neuro-fuzzy inference system, decision tree, and K-means for intrusion detection
For generating an interpretable deep architecture for identifying deep intrusion patterns, this study proposes an approach that combines ANFIS (Adaptive Network-based Fuzzy Inference System) and DT (Decision Tree) for interpreting the deep pattern of intrusion detection. Meanwhile, for improving the...
Autores principales: | Liu, Jia, Yinchai, Wang, Siong, Teh Chee, Li, Xinjin, Zhao, Liping, Wei, Fengrui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715629/ https://www.ncbi.nlm.nih.gov/pubmed/36456582 http://dx.doi.org/10.1038/s41598-022-23765-x |
Ejemplares similares
-
On the combination of adaptive neuro-fuzzy inference system and deep residual network for improving detection rates on intrusion detection
por: Liu, Jia, et al.
Publicado: (2022) -
Special issue on neuro, fuzzy and their hybridization
por: Yang, Longzhi, et al.
Publicado: (2023) -
An adaptive-neuro fuzzy inference system based-hybrid technique for performing load disaggregation for residential customers
por: Abbas, Muhammad Zaigham, et al.
Publicado: (2022) -
Application of Adaptive Neuro-Fuzzy Inference System in Flammability Parameter Prediction
por: Afriyie Mensah, Rhoda, et al.
Publicado: (2020) -
Taxonomy of Adaptive Neuro-Fuzzy Inference System in Modern Engineering Sciences
por: Chopra, Shivali, et al.
Publicado: (2021)