Cargando…
Dialysis based-culture medium conditioning improved the generation of human induced pluripotent stem cell derived-liver organoid in a high cell density
Human pluripotent stem cell-derived liver organoids (HLOs) have recently become a promising alternative for liver regenerative therapy. To realize this application, a large amount of human-induced pluripotent stem cells (hiPSCs) derived-liver cells are required for partial liver replacement during t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715714/ https://www.ncbi.nlm.nih.gov/pubmed/36456801 http://dx.doi.org/10.1038/s41598-022-25325-9 |
Sumario: | Human pluripotent stem cell-derived liver organoids (HLOs) have recently become a promising alternative for liver regenerative therapy. To realize this application, a large amount of human-induced pluripotent stem cells (hiPSCs) derived-liver cells are required for partial liver replacement during transplantation. This method requires stepwise induction using costly growth factors to direct the hiPSCs into the hepatic lineage. Therefore, we developed a simple dialysis-based medium conditioning that fully utilized growth factors accumulation to improve hepatic differentiation of hiPSCs at a high cell density. The results demonstrated that the dialysis culture system could accumulate the four essential growth factors required in each differentiation stage: activin A, bone morphogenetic protein 4 (BMP4), hepatocyte growth factor (HGF), and oncostatin M (OSM). As a result, this low lactate culture environment allowed high-density bipotential hepatic differentiation of up to 4.5 × 10(7) cells/mL of human liver organoids (HLOs), consisting of hiPSC derived-hepatocyte like cells (HLCs) and cholangiocyte like-cells (CLCs). The differentiated HLOs presented a better or comparable hepatic marker and hepatobiliary physiology to the one that differentiated in suspension culture with routine daily medium replacement at a lower cell density. This simple miniaturized dialysis culture system demonstrated the feasibility of cost-effective high-density hepatic differentiation with minimum growth factor usage. |
---|