Cargando…
Transgelin exacerbates pulmonary artery smooth muscle cell dysfunction in shunt‐related pulmonary arterial hypertension
AIMS: Orchestrating the transition from reversible medial hypertrophy to irreversible plexiform lesions is crucial for pulmonary arterial hypertension related to congenital heart disease (CHD‐PAH). Transgelin is an actin‐binding protein that modulates pulmonary arterial smooth muscle cell (PASMC) dy...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715770/ https://www.ncbi.nlm.nih.gov/pubmed/35841124 http://dx.doi.org/10.1002/ehf2.14080 |
_version_ | 1784842530445066240 |
---|---|
author | Zhou, Jing‐jing Yang, Jian Li, Li Quan, Rui‐lin Chen, Xiao‐xi Qian, Yu‐ling Huang, Li Wang, Pei‐he Li, Yue Meng, Xian‐min Chen, Xi Gu, Qing He, Jian‐Guo |
author_facet | Zhou, Jing‐jing Yang, Jian Li, Li Quan, Rui‐lin Chen, Xiao‐xi Qian, Yu‐ling Huang, Li Wang, Pei‐he Li, Yue Meng, Xian‐min Chen, Xi Gu, Qing He, Jian‐Guo |
author_sort | Zhou, Jing‐jing |
collection | PubMed |
description | AIMS: Orchestrating the transition from reversible medial hypertrophy to irreversible plexiform lesions is crucial for pulmonary arterial hypertension related to congenital heart disease (CHD‐PAH). Transgelin is an actin‐binding protein that modulates pulmonary arterial smooth muscle cell (PASMC) dysfunction. In this study, we aimed to probe the molecular mechanism and biological function of transgelin in the pathogenesis of CHD‐PAH. METHODS AND RESULTS: Transgelin expression was detected in lung tissues from both CHD‐PAH patients and monocrotaline (MCT)‐plus aortocaval (AV)‐induced PAH rats by immunohistochemistry. In vitro, the effects of transgelin on the proliferation, migration, and apoptosis of human PASMCs (HPASMCs) were evaluated by the cell count and EdU assays, transwell migration assay, and TUNEL assay, respectively. And the effect of transgelin on the expression of HPASMC phenotype markers was assessed by the immunoblotting assay. (i) Compared with the normal control group (n = 12), transgelin expression was significantly overexpressed in the pulmonary arterioles of the reversible (n = 15) and irreversible CHD‐PAH group (n = 4) (reversible group vs. control group: 18.2 ± 5.1 vs. 13.6 ± 2.6%, P < 0.05; irreversible group vs. control group: 29.9 ± 4.7 vs. 13.6 ± 2.6%, P < 0.001; irreversible group vs. reversible group: 29.9 ± 4.7 vs. 18.2 ± 5.1, P < 0.001). This result was further confirmed in MCT‐AV‐induced PAH rats. Besides, the transgelin expression level was positively correlated with the pathological grading of pulmonary arteries in CHD‐PAH patients (r = 0.48, P = 0.03, n = 19). (ii) Compared with the normal control group (n = 12), TGF‐β1 expression was notably overexpressed in the pulmonary arterioles of the reversible (n = 15) and irreversible CHD‐PAH group (n = 4) (reversible group vs. control group: 14.8 ± 4.4 vs. 6.0 ± 2.5%, P < 0.001; irreversible group vs. control group: 20.1 ± 4.4 vs. 6.0 ± 2.5%, P < 0.001; irreversible group vs. reversible group: 20.1 ± 4.4 vs. 14.8 ± 4.4, P < 0.01). The progression‐dependent correlation between TGF‐β1 and transgelin was demonstrated in CHD‐PAH patients (r = 0.48, P = 0.04, n = 19) and MCT‐AV‐induced PAH rats, which was further confirmed at sub‐cellular levels. (iii) Knockdown of transgelin diminished proliferation, migration, apoptosis resistance, and phenotypic transformation of HPASMCs through repressing the TGF‐β1 signalling pathway. On the contrary, transgelin overexpression resulted in the opposite effects. CONCLUSIONS: These results indicate that transgelin may be an indicator of CHD‐PAH development via boosting HPASMC dysfunction through positive regulation of the TGF‐β1 signalling pathway, as well as a potential therapeutic target for the treatment of CHD‐PAH. |
format | Online Article Text |
id | pubmed-9715770 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-97157702022-12-05 Transgelin exacerbates pulmonary artery smooth muscle cell dysfunction in shunt‐related pulmonary arterial hypertension Zhou, Jing‐jing Yang, Jian Li, Li Quan, Rui‐lin Chen, Xiao‐xi Qian, Yu‐ling Huang, Li Wang, Pei‐he Li, Yue Meng, Xian‐min Chen, Xi Gu, Qing He, Jian‐Guo ESC Heart Fail Original Articles AIMS: Orchestrating the transition from reversible medial hypertrophy to irreversible plexiform lesions is crucial for pulmonary arterial hypertension related to congenital heart disease (CHD‐PAH). Transgelin is an actin‐binding protein that modulates pulmonary arterial smooth muscle cell (PASMC) dysfunction. In this study, we aimed to probe the molecular mechanism and biological function of transgelin in the pathogenesis of CHD‐PAH. METHODS AND RESULTS: Transgelin expression was detected in lung tissues from both CHD‐PAH patients and monocrotaline (MCT)‐plus aortocaval (AV)‐induced PAH rats by immunohistochemistry. In vitro, the effects of transgelin on the proliferation, migration, and apoptosis of human PASMCs (HPASMCs) were evaluated by the cell count and EdU assays, transwell migration assay, and TUNEL assay, respectively. And the effect of transgelin on the expression of HPASMC phenotype markers was assessed by the immunoblotting assay. (i) Compared with the normal control group (n = 12), transgelin expression was significantly overexpressed in the pulmonary arterioles of the reversible (n = 15) and irreversible CHD‐PAH group (n = 4) (reversible group vs. control group: 18.2 ± 5.1 vs. 13.6 ± 2.6%, P < 0.05; irreversible group vs. control group: 29.9 ± 4.7 vs. 13.6 ± 2.6%, P < 0.001; irreversible group vs. reversible group: 29.9 ± 4.7 vs. 18.2 ± 5.1, P < 0.001). This result was further confirmed in MCT‐AV‐induced PAH rats. Besides, the transgelin expression level was positively correlated with the pathological grading of pulmonary arteries in CHD‐PAH patients (r = 0.48, P = 0.03, n = 19). (ii) Compared with the normal control group (n = 12), TGF‐β1 expression was notably overexpressed in the pulmonary arterioles of the reversible (n = 15) and irreversible CHD‐PAH group (n = 4) (reversible group vs. control group: 14.8 ± 4.4 vs. 6.0 ± 2.5%, P < 0.001; irreversible group vs. control group: 20.1 ± 4.4 vs. 6.0 ± 2.5%, P < 0.001; irreversible group vs. reversible group: 20.1 ± 4.4 vs. 14.8 ± 4.4, P < 0.01). The progression‐dependent correlation between TGF‐β1 and transgelin was demonstrated in CHD‐PAH patients (r = 0.48, P = 0.04, n = 19) and MCT‐AV‐induced PAH rats, which was further confirmed at sub‐cellular levels. (iii) Knockdown of transgelin diminished proliferation, migration, apoptosis resistance, and phenotypic transformation of HPASMCs through repressing the TGF‐β1 signalling pathway. On the contrary, transgelin overexpression resulted in the opposite effects. CONCLUSIONS: These results indicate that transgelin may be an indicator of CHD‐PAH development via boosting HPASMC dysfunction through positive regulation of the TGF‐β1 signalling pathway, as well as a potential therapeutic target for the treatment of CHD‐PAH. John Wiley and Sons Inc. 2022-07-15 /pmc/articles/PMC9715770/ /pubmed/35841124 http://dx.doi.org/10.1002/ehf2.14080 Text en © 2022 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Articles Zhou, Jing‐jing Yang, Jian Li, Li Quan, Rui‐lin Chen, Xiao‐xi Qian, Yu‐ling Huang, Li Wang, Pei‐he Li, Yue Meng, Xian‐min Chen, Xi Gu, Qing He, Jian‐Guo Transgelin exacerbates pulmonary artery smooth muscle cell dysfunction in shunt‐related pulmonary arterial hypertension |
title | Transgelin exacerbates pulmonary artery smooth muscle cell dysfunction in shunt‐related pulmonary arterial hypertension |
title_full | Transgelin exacerbates pulmonary artery smooth muscle cell dysfunction in shunt‐related pulmonary arterial hypertension |
title_fullStr | Transgelin exacerbates pulmonary artery smooth muscle cell dysfunction in shunt‐related pulmonary arterial hypertension |
title_full_unstemmed | Transgelin exacerbates pulmonary artery smooth muscle cell dysfunction in shunt‐related pulmonary arterial hypertension |
title_short | Transgelin exacerbates pulmonary artery smooth muscle cell dysfunction in shunt‐related pulmonary arterial hypertension |
title_sort | transgelin exacerbates pulmonary artery smooth muscle cell dysfunction in shunt‐related pulmonary arterial hypertension |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715770/ https://www.ncbi.nlm.nih.gov/pubmed/35841124 http://dx.doi.org/10.1002/ehf2.14080 |
work_keys_str_mv | AT zhoujingjing transgelinexacerbatespulmonaryarterysmoothmusclecelldysfunctioninshuntrelatedpulmonaryarterialhypertension AT yangjian transgelinexacerbatespulmonaryarterysmoothmusclecelldysfunctioninshuntrelatedpulmonaryarterialhypertension AT lili transgelinexacerbatespulmonaryarterysmoothmusclecelldysfunctioninshuntrelatedpulmonaryarterialhypertension AT quanruilin transgelinexacerbatespulmonaryarterysmoothmusclecelldysfunctioninshuntrelatedpulmonaryarterialhypertension AT chenxiaoxi transgelinexacerbatespulmonaryarterysmoothmusclecelldysfunctioninshuntrelatedpulmonaryarterialhypertension AT qianyuling transgelinexacerbatespulmonaryarterysmoothmusclecelldysfunctioninshuntrelatedpulmonaryarterialhypertension AT huangli transgelinexacerbatespulmonaryarterysmoothmusclecelldysfunctioninshuntrelatedpulmonaryarterialhypertension AT wangpeihe transgelinexacerbatespulmonaryarterysmoothmusclecelldysfunctioninshuntrelatedpulmonaryarterialhypertension AT liyue transgelinexacerbatespulmonaryarterysmoothmusclecelldysfunctioninshuntrelatedpulmonaryarterialhypertension AT mengxianmin transgelinexacerbatespulmonaryarterysmoothmusclecelldysfunctioninshuntrelatedpulmonaryarterialhypertension AT chenxi transgelinexacerbatespulmonaryarterysmoothmusclecelldysfunctioninshuntrelatedpulmonaryarterialhypertension AT guqing transgelinexacerbatespulmonaryarterysmoothmusclecelldysfunctioninshuntrelatedpulmonaryarterialhypertension AT hejianguo transgelinexacerbatespulmonaryarterysmoothmusclecelldysfunctioninshuntrelatedpulmonaryarterialhypertension |