Cargando…

Safety and efficacy of a wireless pulmonary artery pressure sensor: primary endpoint results of the SIRONA 2 clinical trial

AIMS: Implantable pulmonary artery pressure (PAP) sensors have been shown to reduce heart failure hospitalizations (HFH) in selected patients. The goal of this study was to evaluate the safety and efficacy of a novel wireless PAP monitoring system in patients with heart failure (HF). METHODS AND RES...

Descripción completa

Detalles Bibliográficos
Autores principales: Sharif, Faisal, Rosenkranz, Stephen, Bartunek, Jozef, Kempf, Tibor, Assmus, Birgit, Mahon, Niall G., Mullens, Wilfried
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715805/
https://www.ncbi.nlm.nih.gov/pubmed/35686479
http://dx.doi.org/10.1002/ehf2.14006
_version_ 1784842539795218432
author Sharif, Faisal
Rosenkranz, Stephen
Bartunek, Jozef
Kempf, Tibor
Assmus, Birgit
Mahon, Niall G.
Mullens, Wilfried
author_facet Sharif, Faisal
Rosenkranz, Stephen
Bartunek, Jozef
Kempf, Tibor
Assmus, Birgit
Mahon, Niall G.
Mullens, Wilfried
author_sort Sharif, Faisal
collection PubMed
description AIMS: Implantable pulmonary artery pressure (PAP) sensors have been shown to reduce heart failure hospitalizations (HFH) in selected patients. The goal of this study was to evaluate the safety and efficacy of a novel wireless PAP monitoring system in patients with heart failure (HF). METHODS AND RESULTS: This is a prospective, multi‐centre, open‐label, single‐arm trial evaluating the safety and efficacy of the Cordella™ PA Sensor System including the comprehensive Cordella™ Heart Failure System (CHFS) in patients with New York Heart Association (NYHA) Class III heart failure with a heart failure hospitalization and/or increase of N‐terminal pro‐Brain Natriuretic Peptide (NT‐proBNP) within 12 months of enrolment. The primary efficacy endpoint was the accuracy of PA sensor mean PAP measurements, compared with fluid‐filled catheter mean PAP measurements obtained by standard right heart catheterization (RHC) at 90 days post‐implant, assessed in all patients with a successful implant. The primary safety endpoint was freedom from adverse events associated with use of the Cordella PA Sensor System through 30 days post‐implant, assessed in all patients who entered the cath lab for PA sensor implant. The PA sensor was successfully implanted in 70 patients. Equivalence between the PA sensor and RHC for mean pulmonary artery pressures was excellent with measurements confined within the equivalence bounds of −4.0 to 4.0 mmHg (mean PAP: 0.0 to 2.9 mmHg, P = 0.003). The device safety profile was excellent with 98.6% freedom from Device System Related Complications, defined as invasive treatment, device explant or death. There were no pressure sensor failures. Patients' adherence to daily measurement transmissions of PAP and vital signs was 94%. CONCLUSIONS: This trial supports the safety and efficacy of the Cordella PA Sensor System and in conjunction with the CHFS enables comprehensive HF management in NYHA class III heart failure patients.
format Online
Article
Text
id pubmed-9715805
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-97158052022-12-05 Safety and efficacy of a wireless pulmonary artery pressure sensor: primary endpoint results of the SIRONA 2 clinical trial Sharif, Faisal Rosenkranz, Stephen Bartunek, Jozef Kempf, Tibor Assmus, Birgit Mahon, Niall G. Mullens, Wilfried ESC Heart Fail Original Articles AIMS: Implantable pulmonary artery pressure (PAP) sensors have been shown to reduce heart failure hospitalizations (HFH) in selected patients. The goal of this study was to evaluate the safety and efficacy of a novel wireless PAP monitoring system in patients with heart failure (HF). METHODS AND RESULTS: This is a prospective, multi‐centre, open‐label, single‐arm trial evaluating the safety and efficacy of the Cordella™ PA Sensor System including the comprehensive Cordella™ Heart Failure System (CHFS) in patients with New York Heart Association (NYHA) Class III heart failure with a heart failure hospitalization and/or increase of N‐terminal pro‐Brain Natriuretic Peptide (NT‐proBNP) within 12 months of enrolment. The primary efficacy endpoint was the accuracy of PA sensor mean PAP measurements, compared with fluid‐filled catheter mean PAP measurements obtained by standard right heart catheterization (RHC) at 90 days post‐implant, assessed in all patients with a successful implant. The primary safety endpoint was freedom from adverse events associated with use of the Cordella PA Sensor System through 30 days post‐implant, assessed in all patients who entered the cath lab for PA sensor implant. The PA sensor was successfully implanted in 70 patients. Equivalence between the PA sensor and RHC for mean pulmonary artery pressures was excellent with measurements confined within the equivalence bounds of −4.0 to 4.0 mmHg (mean PAP: 0.0 to 2.9 mmHg, P = 0.003). The device safety profile was excellent with 98.6% freedom from Device System Related Complications, defined as invasive treatment, device explant or death. There were no pressure sensor failures. Patients' adherence to daily measurement transmissions of PAP and vital signs was 94%. CONCLUSIONS: This trial supports the safety and efficacy of the Cordella PA Sensor System and in conjunction with the CHFS enables comprehensive HF management in NYHA class III heart failure patients. John Wiley and Sons Inc. 2022-06-10 /pmc/articles/PMC9715805/ /pubmed/35686479 http://dx.doi.org/10.1002/ehf2.14006 Text en © 2022 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Original Articles
Sharif, Faisal
Rosenkranz, Stephen
Bartunek, Jozef
Kempf, Tibor
Assmus, Birgit
Mahon, Niall G.
Mullens, Wilfried
Safety and efficacy of a wireless pulmonary artery pressure sensor: primary endpoint results of the SIRONA 2 clinical trial
title Safety and efficacy of a wireless pulmonary artery pressure sensor: primary endpoint results of the SIRONA 2 clinical trial
title_full Safety and efficacy of a wireless pulmonary artery pressure sensor: primary endpoint results of the SIRONA 2 clinical trial
title_fullStr Safety and efficacy of a wireless pulmonary artery pressure sensor: primary endpoint results of the SIRONA 2 clinical trial
title_full_unstemmed Safety and efficacy of a wireless pulmonary artery pressure sensor: primary endpoint results of the SIRONA 2 clinical trial
title_short Safety and efficacy of a wireless pulmonary artery pressure sensor: primary endpoint results of the SIRONA 2 clinical trial
title_sort safety and efficacy of a wireless pulmonary artery pressure sensor: primary endpoint results of the sirona 2 clinical trial
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715805/
https://www.ncbi.nlm.nih.gov/pubmed/35686479
http://dx.doi.org/10.1002/ehf2.14006
work_keys_str_mv AT shariffaisal safetyandefficacyofawirelesspulmonaryarterypressuresensorprimaryendpointresultsofthesirona2clinicaltrial
AT rosenkranzstephen safetyandefficacyofawirelesspulmonaryarterypressuresensorprimaryendpointresultsofthesirona2clinicaltrial
AT bartunekjozef safetyandefficacyofawirelesspulmonaryarterypressuresensorprimaryendpointresultsofthesirona2clinicaltrial
AT kempftibor safetyandefficacyofawirelesspulmonaryarterypressuresensorprimaryendpointresultsofthesirona2clinicaltrial
AT assmusbirgit safetyandefficacyofawirelesspulmonaryarterypressuresensorprimaryendpointresultsofthesirona2clinicaltrial
AT mahonniallg safetyandefficacyofawirelesspulmonaryarterypressuresensorprimaryendpointresultsofthesirona2clinicaltrial
AT mullenswilfried safetyandefficacyofawirelesspulmonaryarterypressuresensorprimaryendpointresultsofthesirona2clinicaltrial