Cargando…

Utilizing longitudinal data in assessing all‐cause mortality in patients hospitalized with heart failure

AIMS: Risk stratification in patients with a new onset or worsened heart failure (HF) is essential for clinical decision making. We have utilized a novel approach to enrich patient level prognostication using longitudinally gathered data to develop ML‐based algorithms predicting all‐cause 30, 90, 18...

Descripción completa

Detalles Bibliográficos
Autores principales: Herman, Robert, Vanderheyden, Marc, Vavrik, Boris, Beles, Monika, Palus, Timotej, Nelis, Olivier, Goethals, Marc, Verstreken, Sofie, Dierckx, Riet, Penicka, Martin, Heggermont, Ward, Bartunek, Jozef
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715844/
https://www.ncbi.nlm.nih.gov/pubmed/35695324
http://dx.doi.org/10.1002/ehf2.14011
_version_ 1784842548281344000
author Herman, Robert
Vanderheyden, Marc
Vavrik, Boris
Beles, Monika
Palus, Timotej
Nelis, Olivier
Goethals, Marc
Verstreken, Sofie
Dierckx, Riet
Penicka, Martin
Heggermont, Ward
Bartunek, Jozef
author_facet Herman, Robert
Vanderheyden, Marc
Vavrik, Boris
Beles, Monika
Palus, Timotej
Nelis, Olivier
Goethals, Marc
Verstreken, Sofie
Dierckx, Riet
Penicka, Martin
Heggermont, Ward
Bartunek, Jozef
author_sort Herman, Robert
collection PubMed
description AIMS: Risk stratification in patients with a new onset or worsened heart failure (HF) is essential for clinical decision making. We have utilized a novel approach to enrich patient level prognostication using longitudinally gathered data to develop ML‐based algorithms predicting all‐cause 30, 90, 180, 360, and 720 day mortality. METHODS AND RESULTS: In a cohort of 2449 HF patients hospitalized between 1 January 2011 and 31 December 2017, we utilized 422 parameters derived from 151 451 patient exams. They included clinical phenotyping, ECG, laboratory, echocardiography, catheterization data or percutaneous and surgical interventions reflecting the standard of care as captured in individual electronic records. The development of predictive models consisted of 101 iterations of repeated random subsampling splits into balanced training and validation sets. ML models yielded area under the receiver operating characteristic curve (AUC‐ROC) performance ranging from 0.83 to 0.89 on the outcome‐balanced validation set in predicting all‐cause mortality at aforementioned time‐limits. The 1 year mortality prediction model recorded an AUC of 0.85. We observed stable model performance across all HF phenotypes: HFpEF 0.83 AUC, HFmrEF 0.85 AUC, and HFrEF 0.86 AUC, respectively. Model performance improved when utilizing data from more hospital contacts compared with only data collected at baseline. CONCLUSIONS: Our findings present a novel, patient‐level, comprehensive ML‐based algorithm for predicting all‐cause mortality in new or worsened heart failure. Its robust performance across phenotypes throughout the longitudinal patient follow‐up suggests its potential in point‐of‐care clinical risk stratification.
format Online
Article
Text
id pubmed-9715844
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-97158442022-12-05 Utilizing longitudinal data in assessing all‐cause mortality in patients hospitalized with heart failure Herman, Robert Vanderheyden, Marc Vavrik, Boris Beles, Monika Palus, Timotej Nelis, Olivier Goethals, Marc Verstreken, Sofie Dierckx, Riet Penicka, Martin Heggermont, Ward Bartunek, Jozef ESC Heart Fail Study Designs AIMS: Risk stratification in patients with a new onset or worsened heart failure (HF) is essential for clinical decision making. We have utilized a novel approach to enrich patient level prognostication using longitudinally gathered data to develop ML‐based algorithms predicting all‐cause 30, 90, 180, 360, and 720 day mortality. METHODS AND RESULTS: In a cohort of 2449 HF patients hospitalized between 1 January 2011 and 31 December 2017, we utilized 422 parameters derived from 151 451 patient exams. They included clinical phenotyping, ECG, laboratory, echocardiography, catheterization data or percutaneous and surgical interventions reflecting the standard of care as captured in individual electronic records. The development of predictive models consisted of 101 iterations of repeated random subsampling splits into balanced training and validation sets. ML models yielded area under the receiver operating characteristic curve (AUC‐ROC) performance ranging from 0.83 to 0.89 on the outcome‐balanced validation set in predicting all‐cause mortality at aforementioned time‐limits. The 1 year mortality prediction model recorded an AUC of 0.85. We observed stable model performance across all HF phenotypes: HFpEF 0.83 AUC, HFmrEF 0.85 AUC, and HFrEF 0.86 AUC, respectively. Model performance improved when utilizing data from more hospital contacts compared with only data collected at baseline. CONCLUSIONS: Our findings present a novel, patient‐level, comprehensive ML‐based algorithm for predicting all‐cause mortality in new or worsened heart failure. Its robust performance across phenotypes throughout the longitudinal patient follow‐up suggests its potential in point‐of‐care clinical risk stratification. John Wiley and Sons Inc. 2022-06-13 /pmc/articles/PMC9715844/ /pubmed/35695324 http://dx.doi.org/10.1002/ehf2.14011 Text en © 2022 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Study Designs
Herman, Robert
Vanderheyden, Marc
Vavrik, Boris
Beles, Monika
Palus, Timotej
Nelis, Olivier
Goethals, Marc
Verstreken, Sofie
Dierckx, Riet
Penicka, Martin
Heggermont, Ward
Bartunek, Jozef
Utilizing longitudinal data in assessing all‐cause mortality in patients hospitalized with heart failure
title Utilizing longitudinal data in assessing all‐cause mortality in patients hospitalized with heart failure
title_full Utilizing longitudinal data in assessing all‐cause mortality in patients hospitalized with heart failure
title_fullStr Utilizing longitudinal data in assessing all‐cause mortality in patients hospitalized with heart failure
title_full_unstemmed Utilizing longitudinal data in assessing all‐cause mortality in patients hospitalized with heart failure
title_short Utilizing longitudinal data in assessing all‐cause mortality in patients hospitalized with heart failure
title_sort utilizing longitudinal data in assessing all‐cause mortality in patients hospitalized with heart failure
topic Study Designs
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715844/
https://www.ncbi.nlm.nih.gov/pubmed/35695324
http://dx.doi.org/10.1002/ehf2.14011
work_keys_str_mv AT hermanrobert utilizinglongitudinaldatainassessingallcausemortalityinpatientshospitalizedwithheartfailure
AT vanderheydenmarc utilizinglongitudinaldatainassessingallcausemortalityinpatientshospitalizedwithheartfailure
AT vavrikboris utilizinglongitudinaldatainassessingallcausemortalityinpatientshospitalizedwithheartfailure
AT belesmonika utilizinglongitudinaldatainassessingallcausemortalityinpatientshospitalizedwithheartfailure
AT palustimotej utilizinglongitudinaldatainassessingallcausemortalityinpatientshospitalizedwithheartfailure
AT nelisolivier utilizinglongitudinaldatainassessingallcausemortalityinpatientshospitalizedwithheartfailure
AT goethalsmarc utilizinglongitudinaldatainassessingallcausemortalityinpatientshospitalizedwithheartfailure
AT verstrekensofie utilizinglongitudinaldatainassessingallcausemortalityinpatientshospitalizedwithheartfailure
AT dierckxriet utilizinglongitudinaldatainassessingallcausemortalityinpatientshospitalizedwithheartfailure
AT penickamartin utilizinglongitudinaldatainassessingallcausemortalityinpatientshospitalizedwithheartfailure
AT heggermontward utilizinglongitudinaldatainassessingallcausemortalityinpatientshospitalizedwithheartfailure
AT bartunekjozef utilizinglongitudinaldatainassessingallcausemortalityinpatientshospitalizedwithheartfailure