Cargando…
Comparison of pre-trained deep learning model classification performance of COVID-19 and normal chest X-ray images
INTRODUCTION: The aim of this study was to compare the accuracy and performance of 12 pre-trained deep learning models for classifying covid-19 and normal chest X-ray images from Kaggle. MATERIALS: a desktop computer with an Intel CPU i9-10900 2.80GHz and NVIDIA GPU GeForce RTX2070 SUPER, Anaconda3...
Autores principales: | Vichianin, Yudthaphon, Imsap, Chayakorn, Niempinijsakul, Thanaporn, Semprawat, Phimsuwaree, Jitsongserm, Thunyani, Maklad, Sukanya, Youkhong, Thanathip, Ngamsombat, Chanon, Ina, Natee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715996/ https://www.ncbi.nlm.nih.gov/pubmed/36441101 http://dx.doi.org/10.1016/j.jmir.2022.10.209 |
Ejemplares similares
-
Accuracy of Support-Vector Machines for Diagnosis of Alzheimer's Disease, Using Volume of Brain Obtained by Structural MRI at Siriraj Hospital
por: Vichianin, Yudthaphon, et al.
Publicado: (2021) -
Reliable Sarcoidosis Detection Using Chest X-rays with EfficientNets and Stain-Normalization Techniques
por: Baghdadi, Nadiah, et al.
Publicado: (2022) -
Deep Learning Classification of Tuberculosis Chest X-rays
por: Goswami, Kartik K, et al.
Publicado: (2023) -
Transfer learning with chest X-rays for ER patient classification
por: Stubblefield, Jonathan, et al.
Publicado: (2020) -
Pre-processing methods in chest X-ray image classification
por: Giełczyk, Agata, et al.
Publicado: (2022)