Cargando…

Immune response to arbovirus infection in obesity

Obesity is a global health problem that affects 650 million people worldwide and leads to diverse changes in host immunity. Individuals with obesity experience an increase in the size and the number of adipocytes, which function as an endocrine organ and release various adipocytokines such as leptin...

Descripción completa

Detalles Bibliográficos
Autores principales: Hameed, Muddassar, Geerling, Elizabeth, Pinto, Amelia K., Miraj, Iqra, Weger-Lucarelli, James
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9716109/
https://www.ncbi.nlm.nih.gov/pubmed/36466818
http://dx.doi.org/10.3389/fimmu.2022.968582
_version_ 1784842609746771968
author Hameed, Muddassar
Geerling, Elizabeth
Pinto, Amelia K.
Miraj, Iqra
Weger-Lucarelli, James
author_facet Hameed, Muddassar
Geerling, Elizabeth
Pinto, Amelia K.
Miraj, Iqra
Weger-Lucarelli, James
author_sort Hameed, Muddassar
collection PubMed
description Obesity is a global health problem that affects 650 million people worldwide and leads to diverse changes in host immunity. Individuals with obesity experience an increase in the size and the number of adipocytes, which function as an endocrine organ and release various adipocytokines such as leptin and adiponectin that exert wide ranging effects on other cells. In individuals with obesity, macrophages account for up to 40% of adipose tissue (AT) cells, three times more than in adipose tissue (10%) of healthy weight individuals and secrete several cytokines and chemokines such as interleukin (IL)-1β, chemokine C-C ligand (CCL)-2, IL-6, CCL5, and tumor necrosis factor (TNF)-α, leading to the development of inflammation. Overall, obesity-derived cytokines strongly affect immune responses and make patients with obesity more prone to severe symptoms than patients with a healthy weight. Several epidemiological studies reported a strong association between obesity and severe arthropod-borne virus (arbovirus) infections such as dengue virus (DENV), chikungunya virus (CHIKV), West Nile virus (WNV), and Sindbis virus (SINV). Recently, experimental investigations found that DENV, WNV, CHIKV and Mayaro virus (MAYV) infections cause worsened disease outcomes in infected diet induced obese (DIO) mice groups compared to infected healthy-weight animals. The mechanisms leading to higher susceptibility to severe infections in individuals with obesity remain unknown, though a better understanding of the causes will help scientists and clinicians develop host directed therapies to treat severe disease. In this review article, we summarize the effects of obesity on the host immune response in the context of arboviral infections. We have outlined that obesity makes the host more susceptible to infectious agents, likely by disrupting the functions of innate and adaptive immune cells. We have also discussed the immune response of DIO mouse models against some important arboviruses such as CHIKV, MAYV, DENV, and WNV. We can speculate that obesity-induced disruption of innate and adaptive immune cell function in arboviral infections ultimately affects the course of arboviral disease. Therefore, further studies are needed to explore the cellular and molecular aspects of immunity that are compromised in obesity during arboviral infections or vaccination, which will be helpful in developing specific therapeutic/prophylactic interventions to prevent immunopathology and disease progression in individuals with obesity.
format Online
Article
Text
id pubmed-9716109
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-97161092022-12-03 Immune response to arbovirus infection in obesity Hameed, Muddassar Geerling, Elizabeth Pinto, Amelia K. Miraj, Iqra Weger-Lucarelli, James Front Immunol Immunology Obesity is a global health problem that affects 650 million people worldwide and leads to diverse changes in host immunity. Individuals with obesity experience an increase in the size and the number of adipocytes, which function as an endocrine organ and release various adipocytokines such as leptin and adiponectin that exert wide ranging effects on other cells. In individuals with obesity, macrophages account for up to 40% of adipose tissue (AT) cells, three times more than in adipose tissue (10%) of healthy weight individuals and secrete several cytokines and chemokines such as interleukin (IL)-1β, chemokine C-C ligand (CCL)-2, IL-6, CCL5, and tumor necrosis factor (TNF)-α, leading to the development of inflammation. Overall, obesity-derived cytokines strongly affect immune responses and make patients with obesity more prone to severe symptoms than patients with a healthy weight. Several epidemiological studies reported a strong association between obesity and severe arthropod-borne virus (arbovirus) infections such as dengue virus (DENV), chikungunya virus (CHIKV), West Nile virus (WNV), and Sindbis virus (SINV). Recently, experimental investigations found that DENV, WNV, CHIKV and Mayaro virus (MAYV) infections cause worsened disease outcomes in infected diet induced obese (DIO) mice groups compared to infected healthy-weight animals. The mechanisms leading to higher susceptibility to severe infections in individuals with obesity remain unknown, though a better understanding of the causes will help scientists and clinicians develop host directed therapies to treat severe disease. In this review article, we summarize the effects of obesity on the host immune response in the context of arboviral infections. We have outlined that obesity makes the host more susceptible to infectious agents, likely by disrupting the functions of innate and adaptive immune cells. We have also discussed the immune response of DIO mouse models against some important arboviruses such as CHIKV, MAYV, DENV, and WNV. We can speculate that obesity-induced disruption of innate and adaptive immune cell function in arboviral infections ultimately affects the course of arboviral disease. Therefore, further studies are needed to explore the cellular and molecular aspects of immunity that are compromised in obesity during arboviral infections or vaccination, which will be helpful in developing specific therapeutic/prophylactic interventions to prevent immunopathology and disease progression in individuals with obesity. Frontiers Media S.A. 2022-11-18 /pmc/articles/PMC9716109/ /pubmed/36466818 http://dx.doi.org/10.3389/fimmu.2022.968582 Text en Copyright © 2022 Hameed, Geerling, Pinto, Miraj and Weger-Lucarelli https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
Hameed, Muddassar
Geerling, Elizabeth
Pinto, Amelia K.
Miraj, Iqra
Weger-Lucarelli, James
Immune response to arbovirus infection in obesity
title Immune response to arbovirus infection in obesity
title_full Immune response to arbovirus infection in obesity
title_fullStr Immune response to arbovirus infection in obesity
title_full_unstemmed Immune response to arbovirus infection in obesity
title_short Immune response to arbovirus infection in obesity
title_sort immune response to arbovirus infection in obesity
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9716109/
https://www.ncbi.nlm.nih.gov/pubmed/36466818
http://dx.doi.org/10.3389/fimmu.2022.968582
work_keys_str_mv AT hameedmuddassar immuneresponsetoarbovirusinfectioninobesity
AT geerlingelizabeth immuneresponsetoarbovirusinfectioninobesity
AT pintoameliak immuneresponsetoarbovirusinfectioninobesity
AT mirajiqra immuneresponsetoarbovirusinfectioninobesity
AT wegerlucarellijames immuneresponsetoarbovirusinfectioninobesity