Cargando…
Classification and visual explanation for COVID-19 pneumonia from CT images using triple learning
This study presents a novel framework for classifying and visualizing pneumonia induced by COVID-19 from CT images. Although many image classification methods using deep learning have been proposed, in the case of medical image fields, standard classification methods are unable to be used in some ca...
Autores principales: | Kato, Sota, Oda, Masahiro, Mori, Kensaku, Shimizu, Akinobu, Otake, Yoshito, Hashimoto, Masahiro, Akashi, Toshiaki, Hotta, Kazuhiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9716499/ https://www.ncbi.nlm.nih.gov/pubmed/36460708 http://dx.doi.org/10.1038/s41598-022-24936-6 |
Ejemplares similares
-
Attention induction for a CT volume classification of COVID-19
por: Takateyama, Yusuke, et al.
Publicado: (2022) -
SR-CycleGAN: super-resolution of clinical CT to micro-CT level with multi-modality super-resolution loss
por: Zheng, Tong, et al.
Publicado: (2022) -
Stable polyp-scene classification via subsampling and residual learning from an imbalanced large dataset
por: Itoh, Hayato, et al.
Publicado: (2019) -
Cardiac fiber tracking on super high-resolution CT images: a comparative study
por: Oda, Hirohisa, et al.
Publicado: (2020) -
Automated mediastinal lymph node detection from CT volumes based on intensity targeted radial structure tensor analysis
por: Oda, Hirohisa, et al.
Publicado: (2017)