Cargando…

Fabrication of TiVO(4) photoelectrode for photoelectrochemical application

Photoelectrochemical (PEC) water splitting is one of the promising, environmentally friendly, carbon emission-free strategies for the cost-effective production of hydrogen. The interest in developing effective approaches for solar-to-hydrogen production with stable and visible light active semicondu...

Descripción completa

Detalles Bibliográficos
Autores principales: Alruwaili, Manal, Roy, Anurag, Nundy, Srijita, Tahir, Asif Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9717350/
https://www.ncbi.nlm.nih.gov/pubmed/36545617
http://dx.doi.org/10.1039/d2ra05894d
Descripción
Sumario:Photoelectrochemical (PEC) water splitting is one of the promising, environmentally friendly, carbon emission-free strategies for the cost-effective production of hydrogen. The interest in developing effective approaches for solar-to-hydrogen production with stable and visible light active semiconductors directed many researchers to develop stable and efficient materials. For the first time, a nanostructured TiVO(4) photoanode was fabricated at a substrate temperature of 250 °C and further annealed at 600 °C using the spray pyrolysis technique and it obtained an optical band gap of ∼2.18 eV. The photoanode underwent photoelectrochemical testing, where it exhibited a high photocurrent density of 0.080 mA cm(−2) at 1.23 V (vs. reversible hydrogen electrode), which can be stable up to 110 min. Further, various physicochemical characterizations were employed to understand the phase purity and thin film growth mechanism. A systematic substrate and annealed temperatures were monitored during the fabrication process. The transmission electron microscopy (TEM) studies revealed agglomeration of TiVO(4) nanoparticles with an average size of ∼100 nm accompanying dendritic orientation at the outer edge. This study envisages the design and development of a novel photocatalyst for water splitting under visible light irradiation, an ideal route to a cost-effective, large-scale, sustainable route for hydrogen production.