Cargando…
Artificial intelligence‐driven consensus gene signatures for improving bladder cancer clinical outcomes identified by multi‐center integration analysis
To accurately predict the prognosis and further improve the clinical outcomes of bladder cancer (BLCA), we leveraged large‐scale data to develop and validate a robust signature consisting of small gene sets. Ten machine‐learning algorithms were enrolled and subsequently transformed into 76 combinati...
Autores principales: | Xu, Hui, Liu, Zaoqu, Weng, Siyuan, Dang, Qin, Ge, Xiaoyong, Zhang, Yuyuan, Ren, Yuqing, Xing, Zhe, Chen, Shuang, Zhou, Yifang, Ren, Jianzhuang, Han, Xinwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718116/ https://www.ncbi.nlm.nih.gov/pubmed/36083778 http://dx.doi.org/10.1002/1878-0261.13313 |
Ejemplares similares
-
Epigenetically regulated gene expression profiles recognized three molecular classifications with prognostic and therapeutic implications in bladder cancer
por: Xu, Hui, et al.
Publicado: (2023) -
ALOX12: A Novel Insight in Bevacizumab Response, Immunotherapy Effect, and Prognosis of Colorectal Cancer
por: Weng, Siyuan, et al.
Publicado: (2022) -
Editorial: Application of artificial intelligence in improving immunotherapeutic efficacy
por: Li, Jie, et al.
Publicado: (2022) -
Gene Expression Profile Reveals a Prognostic Signature of Non–MSI-H/pMMR Colorectal Cancer
por: Liu, Zaoqu, et al.
Publicado: (2022) -
SCG2: A Prognostic Marker That Pinpoints Chemotherapy and Immunotherapy in Colorectal Cancer
por: Weng, Siyuan, et al.
Publicado: (2022)