Cargando…

Fast quantitative bone marrow lesion measurement on knee MRI for the assessment of osteoarthritis

OBJECTIVE: Knee osteoarthritis (KOA) is a prevalent disease with a high economic and social cost. Magnetic resonance imaging (MRI) can be used to visualize many KOA-related structures including bone marrow lesions (BMLs), which are associated with OA pain. Several semi-automated software methods hav...

Descripción completa

Detalles Bibliográficos
Autores principales: Preiswerk, Frank, Sury, Meera S., Wortman, Jeremy R., Neumann, Gesa, Wells, William, Duryea, Jeffrey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718203/
https://www.ncbi.nlm.nih.gov/pubmed/36474467
http://dx.doi.org/10.1016/j.ocarto.2022.100234
Descripción
Sumario:OBJECTIVE: Knee osteoarthritis (KOA) is a prevalent disease with a high economic and social cost. Magnetic resonance imaging (MRI) can be used to visualize many KOA-related structures including bone marrow lesions (BMLs), which are associated with OA pain. Several semi-automated software methods have been developed to segment BMLs, using manual, labor-intensive methods, which can be costly for large clinical trials and other studies of KOA. The goal of our study was to develop and validate a more efficient method to quantify BML volume on knee MRI scans. MATERIALS AND METHODS: We have applied a deep learning approach using a patch-based convolutional neural network (CNN) which was trained using 673 MRI data sets and the segmented BML masks obtained from a trained reader. Given the location of a BML provided by the reader, the network performed a fully automated segmentation of the BML, removing the need for tedious manual delineation. Accuracy was quantified using the Pearson's correlation coefficient, by a comparison to a second expert reader, and using the Dice Similarity Score (DSC). RESULTS: The Pearson's R(2) value was 0.94 and we found similar agreement when comparing two readers (R(2) ​= ​0.85) and each reader versus the DL model (R(2) ​= ​0.95 and R(2) ​= ​0.81). The average DSC was 0.70. CONCLUSIONS: We developed and validated a deep learning-based method to segment BMLs on knee MRI data sets. This has the potential to be a valuable tool for future large studies of KOA.