Cargando…
Predicting total knee arthroplasty from ultrasonography using machine learning
OBJECTIVE: To investigate the value of ultrasonographic data in predicting total knee replacement (TKR). DESIGN: Data from the Musculoskeletal Pain in Ullensaker study (MUST) was linked to the Norwegian Arthroplasty Register to form a 5–7 year prospective cohort study of 630 persons (69% women, mean...
Autores principales: | Tiulpin, Aleksei, Saarakkala, Simo, Mathiessen, Alexander, Hammer, Hilde Berner, Furnes, Ove, Nordsletten, Lars, Englund, Martin, Magnusson, Karin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718281/ https://www.ncbi.nlm.nih.gov/pubmed/36474802 http://dx.doi.org/10.1016/j.ocarto.2022.100319 |
Ejemplares similares
-
Automatic Grading of Individual Knee Osteoarthritis Features in Plain Radiographs Using Deep Convolutional Neural Networks
por: Tiulpin, Aleksei, et al.
Publicado: (2020) -
Automatic Knee Osteoarthritis Diagnosis from Plain Radiographs: A Deep Learning-Based Approach
por: Tiulpin, Aleksei, et al.
Publicado: (2018) -
Ultrasonography of the late-stage knee osteoarthritis prior to total knee arthroplasty: comparison of the ultrasonographic, radiographic and intra-operative findings
por: Nevalainen, Mika T., et al.
Publicado: (2018) -
Acoustic emissions and kinematic instability of the osteoarthritic knee joint: comparison with radiographic findings
por: Nevalainen, Mika T., et al.
Publicado: (2021) -
Multimodal Machine Learning-based Knee Osteoarthritis Progression Prediction from Plain Radiographs and Clinical Data
por: Tiulpin, Aleksei, et al.
Publicado: (2019)