Cargando…
Feature Blending: An Approach toward Generalized Machine Learning Models for Property Prediction
[Image: see text] From studying the atomic structure and chemical behavior to the discovery of new materials and investigating properties of existing materials, machine learning (ML) has been employed in realms that are arduous to probe experimentally. While numerous highly accurate models, specific...
Autores principales: | Satsangi, Swanti, Mishra, Avanish, Singh, Abhishek K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718311/ https://www.ncbi.nlm.nih.gov/pubmed/36855577 http://dx.doi.org/10.1021/acsphyschemau.1c00017 |
Ejemplares similares
-
Universal machine learning framework for defect predictions in zinc blende semiconductors
por: Mannodi-Kanakkithodi, Arun, et al.
Publicado: (2022) -
Strength Predictive Modelling of Soils Treated with Calcium-Based Additives Blended with Eco-Friendly Pozzolans—A Machine Learning Approach
por: Eyo, Eyo U., et al.
Publicado: (2022) -
GNL-Scorer: a generalized model for predicting CRISPR on-target activity by machine learning and featurization
por: Wang, Jun, et al.
Publicado: (2020) -
Prediction of prokaryotic transposases from protein features with machine learning approaches
por: Wang, Qian, et al.
Publicado: (2021) -
A machine learning approach towards the prediction of protein–ligand binding affinity based on fundamental molecular properties
por: Kundu, Indra, et al.
Publicado: (2018)