Cargando…

Theory of Hysteresis in Halide Perovskites by Integration of the Equivalent Circuit

[Image: see text] Perovskite solar cells show a number of internal electronic–ionic effects that produce hysteresis in the current–voltage curves and a dependence of the temporal response on the conditions of the previous stimulus applied to the sample. There are many models and explanations in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Bisquert, Juan, Guerrero, Antonio, Gonzales, Cedric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718316/
https://www.ncbi.nlm.nih.gov/pubmed/36855663
http://dx.doi.org/10.1021/acsphyschemau.1c00009
_version_ 1784843066881867776
author Bisquert, Juan
Guerrero, Antonio
Gonzales, Cedric
author_facet Bisquert, Juan
Guerrero, Antonio
Gonzales, Cedric
author_sort Bisquert, Juan
collection PubMed
description [Image: see text] Perovskite solar cells show a number of internal electronic–ionic effects that produce hysteresis in the current–voltage curves and a dependence of the temporal response on the conditions of the previous stimulus applied to the sample. There are many models and explanations in the literature, but predictive methods that may lead to an assessment of the solar cell behavior based on independent measurements are needed. Here, we develop a method to predict time domain response starting from the frequency domain response measured by impedance spectroscopy over a collection of steady states. The rationale of the method is to convert the impedance response into a set of differential equations, in which the internal state variables emerge naturally and need not be predefined in terms of a physical (drift/diffusion/interfaces) model. Then, one solves (integrates) the evolution for a required external perturbation such as voltage sweep at a constant rate (cyclic voltammetry). Using this method, we solve two elementary but relevant equivalent circuit models for perovskite solar cells and memristors, and we show the emergence of hysteresis in terms of the relevant time and energy constants that can be fully obtained from impedance spectroscopy. We demonstrate quantitatively a central insight in agreement with many observations: regular hysteresis is capacitive, and inverted hysteresis is inductive. Analysis of several types of perovskite solar cells shows excellent correlation of the type of equivalent circuit and the observed hysteresis. A new phenomenon of transformation from capacitive to inductive hysteresis in the course of the current–voltage curve is reported.
format Online
Article
Text
id pubmed-9718316
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-97183162023-02-27 Theory of Hysteresis in Halide Perovskites by Integration of the Equivalent Circuit Bisquert, Juan Guerrero, Antonio Gonzales, Cedric ACS Phys Chem Au [Image: see text] Perovskite solar cells show a number of internal electronic–ionic effects that produce hysteresis in the current–voltage curves and a dependence of the temporal response on the conditions of the previous stimulus applied to the sample. There are many models and explanations in the literature, but predictive methods that may lead to an assessment of the solar cell behavior based on independent measurements are needed. Here, we develop a method to predict time domain response starting from the frequency domain response measured by impedance spectroscopy over a collection of steady states. The rationale of the method is to convert the impedance response into a set of differential equations, in which the internal state variables emerge naturally and need not be predefined in terms of a physical (drift/diffusion/interfaces) model. Then, one solves (integrates) the evolution for a required external perturbation such as voltage sweep at a constant rate (cyclic voltammetry). Using this method, we solve two elementary but relevant equivalent circuit models for perovskite solar cells and memristors, and we show the emergence of hysteresis in terms of the relevant time and energy constants that can be fully obtained from impedance spectroscopy. We demonstrate quantitatively a central insight in agreement with many observations: regular hysteresis is capacitive, and inverted hysteresis is inductive. Analysis of several types of perovskite solar cells shows excellent correlation of the type of equivalent circuit and the observed hysteresis. A new phenomenon of transformation from capacitive to inductive hysteresis in the course of the current–voltage curve is reported. American Chemical Society 2021-07-28 /pmc/articles/PMC9718316/ /pubmed/36855663 http://dx.doi.org/10.1021/acsphyschemau.1c00009 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Bisquert, Juan
Guerrero, Antonio
Gonzales, Cedric
Theory of Hysteresis in Halide Perovskites by Integration of the Equivalent Circuit
title Theory of Hysteresis in Halide Perovskites by Integration of the Equivalent Circuit
title_full Theory of Hysteresis in Halide Perovskites by Integration of the Equivalent Circuit
title_fullStr Theory of Hysteresis in Halide Perovskites by Integration of the Equivalent Circuit
title_full_unstemmed Theory of Hysteresis in Halide Perovskites by Integration of the Equivalent Circuit
title_short Theory of Hysteresis in Halide Perovskites by Integration of the Equivalent Circuit
title_sort theory of hysteresis in halide perovskites by integration of the equivalent circuit
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718316/
https://www.ncbi.nlm.nih.gov/pubmed/36855663
http://dx.doi.org/10.1021/acsphyschemau.1c00009
work_keys_str_mv AT bisquertjuan theoryofhysteresisinhalideperovskitesbyintegrationoftheequivalentcircuit
AT guerreroantonio theoryofhysteresisinhalideperovskitesbyintegrationoftheequivalentcircuit
AT gonzalescedric theoryofhysteresisinhalideperovskitesbyintegrationoftheequivalentcircuit