Cargando…
Sparse Gaussian Process Regression-Based Machine Learned First-Principles Force-Fields for Saturated, Olefinic, and Aromatic Hydrocarbons
[Image: see text] Universal machine learning (ML) interatomic potentials (IAPs) for saturated, olefinic, and aromatic hydrocarbons are generated by using the Sparse Gaussian process regression algorithm. The universal potentials are obtained by combining the potentials for the previously trained alk...
Autores principales: | Ha, Miran, Hajibabaei, Amir, Pourasad, Saeed, Kim, Kwang S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718321/ https://www.ncbi.nlm.nih.gov/pubmed/36855568 http://dx.doi.org/10.1021/acsphyschemau.1c00058 |
Ejemplares similares
-
Correlated product of experts for sparse Gaussian process regression
por: Schürch, Manuel, et al.
Publicado: (2023) -
Heteroscedastic sparse Gaussian process regression-based stochastic material model for plastic structural analysis
por: Chen, Baixi, et al.
Publicado: (2022) -
An algorithm for separation of mixed sparse and Gaussian sources
por: Akkalkotkar, Ameya, et al.
Publicado: (2017) -
Analytical Methods for the Determination of Mineral Oil Saturated Hydrocarbons (MOSH) and Mineral Oil Aromatic Hydrocarbons (MOAH)—A Short Review
por: Weber, Sandra, et al.
Publicado: (2018) -
Regression with Gaussian Processes
por: Kalia, Saarik
Publicado: (2016)