Cargando…

A Noninvasive Method for Monitoring Breathing Patterns in Nonhuman Primates Using a Nasal Thermosensor

Respiration is strongly linked to internal states such as arousal, emotion, and even cognitive processes and provides objective biological information to estimate these states in humans and animals. However, the measurement of respiration has not been established in macaque monkeys, which have been...

Descripción completa

Detalles Bibliográficos
Autores principales: Kunimatsu, Jun, Akiyama, Yusuke, Toyoshima, Osamu, Matsumoto, Masayuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society for Neuroscience 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718345/
https://www.ncbi.nlm.nih.gov/pubmed/36414412
http://dx.doi.org/10.1523/ENEURO.0352-22.2022
Descripción
Sumario:Respiration is strongly linked to internal states such as arousal, emotion, and even cognitive processes and provides objective biological information to estimate these states in humans and animals. However, the measurement of respiration has not been established in macaque monkeys, which have been widely used as model animals for understanding various higher brain functions. In the present study, we developed a method to monitor the respiration of behaving monkeys. We first measured the temperature of their nasal breathing, which changes between inspiration and expiration phases, in an anesthetized condition and estimated the respiration pattern. We compared the estimated pattern with that obtained by a conventional chest band method that has been used in humans and applied to anesthetized, but not behaving, monkeys. These respiration patterns matched well, suggesting that the measurement of nasal air temperature can be used to monitor the respiration of monkeys. Furthermore, we confirmed that the respiration frequency in behaving monkeys monitored by the measurement of nasal air temperature was not affected by the orofacial movement of licking to obtain the liquid reward. We next examined the frequency of respiration when they listened to music or white noise. The respiratory frequency was higher when the monkeys listened to music than the noise. This result is consistent with a phenomenon in humans and indicates the accuracy of our monitoring method. These data suggest that the measurement of nasal air temperature enables us to monitor the respiration of behaving monkeys and thereby estimate their internal states.