Cargando…
Two-Stage Intelligent DarkNet-SqueezeNet Architecture-Based Framework for Multiclass Rice Grain Variety Identification
Image processing is an important domain for identifying various crop varieties. Due to the large amount of rice and its varieties, manually detecting its qualities is a very tedious and time-consuming task. In this work, we propose a two-stage deep learning framework for detecting and classifying mu...
Autores principales: | Fatima, Maryam, Khan, Muhammad Attique, Sharif, Muhammad, Alhaisoni, Majed, Alqahtani, Abdullah, Tariqe, Usman, Kim, Ye Jin, Chang, Byoungchol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718623/ https://www.ncbi.nlm.nih.gov/pubmed/36465951 http://dx.doi.org/10.1155/2022/1339469 |
Ejemplares similares
-
SNELM: SqueezeNet-Guided ELM for COVID-19 Recognition
por: Zhang, Yudong, et al.
Publicado: (2023) -
Real-Time Vehicle Make and Model Recognition with the Residual SqueezeNet Architecture
por: Lee, Hyo Jong, et al.
Publicado: (2019) -
Modified SqueezeNet Architecture for Parkinson’s Disease Detection Based on Keypress Data
por: Bernardo, Lucas Salvador, et al.
Publicado: (2022) -
A Dual Neural Architecture Combined SqueezeNet with OctConv for LiDAR Data Classification
por: Wang, Aili, et al.
Publicado: (2019) -
GestroNet: A Framework of Saliency Estimation and Optimal Deep Learning Features Based Gastrointestinal Diseases Detection and Classification
por: Khan, Muhammad Attique, et al.
Publicado: (2022)