Cargando…
Geodesic motion in Euclidean Schwarzschild geometry
This paper performs a systematic investigation of geodesic motion in Euclidean Schwarzschild geometry, which is studied in the equatorial plane. The explicit form of geodesic motion is obtained in terms of incomplete elliptic integrals of first, second and third kind. No elliptic-like orbits exist i...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718721/ https://www.ncbi.nlm.nih.gov/pubmed/36474711 http://dx.doi.org/10.1140/epjc/s10052-022-11070-w |
Sumario: | This paper performs a systematic investigation of geodesic motion in Euclidean Schwarzschild geometry, which is studied in the equatorial plane. The explicit form of geodesic motion is obtained in terms of incomplete elliptic integrals of first, second and third kind. No elliptic-like orbits exist in Euclidean Schwarzschild geometry, unlike the corresponding Lorentzian pattern. Among unbounded orbits, only unbounded first-kind orbits are allowed, unlike general relativity where unbounded second-kind orbits are always allowed. |
---|