Cargando…

Geodesic motion in Euclidean Schwarzschild geometry

This paper performs a systematic investigation of geodesic motion in Euclidean Schwarzschild geometry, which is studied in the equatorial plane. The explicit form of geodesic motion is obtained in terms of incomplete elliptic integrals of first, second and third kind. No elliptic-like orbits exist i...

Descripción completa

Detalles Bibliográficos
Autores principales: Battista, Emmanuele, Esposito, Giampiero
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718721/
https://www.ncbi.nlm.nih.gov/pubmed/36474711
http://dx.doi.org/10.1140/epjc/s10052-022-11070-w
Descripción
Sumario:This paper performs a systematic investigation of geodesic motion in Euclidean Schwarzschild geometry, which is studied in the equatorial plane. The explicit form of geodesic motion is obtained in terms of incomplete elliptic integrals of first, second and third kind. No elliptic-like orbits exist in Euclidean Schwarzschild geometry, unlike the corresponding Lorentzian pattern. Among unbounded orbits, only unbounded first-kind orbits are allowed, unlike general relativity where unbounded second-kind orbits are always allowed.