Cargando…
Deciphering clinical abbreviations with a privacy protecting machine learning system
Physicians write clinical notes with abbreviations and shorthand that are difficult to decipher. Abbreviations can be clinical jargon (writing “HIT” for “heparin induced thrombocytopenia”), ambiguous terms that require expertise to disambiguate (using “MS” for “multiple sclerosis” or “mental status”...
Autores principales: | Rajkomar, Alvin, Loreaux, Eric, Liu, Yuchen, Kemp, Jonas, Li, Benny, Chen, Ming-Jun, Zhang, Yi, Mohiuddin, Afroz, Gottweis, Juraj |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718734/ https://www.ncbi.nlm.nih.gov/pubmed/36460656 http://dx.doi.org/10.1038/s41467-022-35007-9 |
Ejemplares similares
-
Machine learning with naturally labeled data for identifying abbreviation definitions
por: Yeganova, Lana, et al.
Publicado: (2011) -
Reply: metrics to assess machine learning models
por: Rajkomar, Alvin, et al.
Publicado: (2018) -
Application of Personal Information Privacy Protection Based on Machine Learning Algorithm
por: Lang, Fang, et al.
Publicado: (2022) -
Weighting Primary Care Patient Panel Size: A Novel Electronic Health Record-Derived Measure Using Machine Learning
por: Rajkomar, Alvin, et al.
Publicado: (2016) -
Quantum machine learning with differential privacy
por: Watkins, William M., et al.
Publicado: (2023)