Cargando…
Prediction of fluid oil and gas volumes of shales with a deep learning model and its application to the Bakken and Marcellus shales
The fluid oil and gas volumes (S1) retained within the shales are one of the most important parameter of producible fluid oil and gas saturations of shales together with total organic carbon content. The S1 volumes can directly be obtained by Rock-Eval pyrolysis analysis. However, it is time consumi...
Autor principal: | Şen, Şamil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718744/ https://www.ncbi.nlm.nih.gov/pubmed/36460682 http://dx.doi.org/10.1038/s41598-022-23406-3 |
Ejemplares similares
-
Application of machine learning in predicting oil rate decline for Bakken shale oil wells
por: Bhattacharyya, Subhrajyoti, et al.
Publicado: (2022) -
Price Responsiveness of Shale Oil: A Bakken Case Study
por: Vatter, Marc H., et al.
Publicado: (2022) -
Bacterial Biomarkers of Marcellus Shale Activity in Pennsylvania
por: Chen See, Jeremy R., et al.
Publicado: (2018) -
Effect of Silica Nanoparticles on Polymer Adsorption
Reduction on Marcellus Shale
por: Al-Hajri, Sameer, et al.
Publicado: (2021) -
Life Cycle
Water Consumption and Wastewater Generation
Impacts of a Marcellus Shale Gas Well
por: Jiang, Mohan, et al.
Publicado: (2013)