Cargando…
Metal artifact reduction in kV CT images throughout two-step sequential deep convolutional neural networks by combining multi-modal imaging (MARTIAN)
This work attempted to construct a new metal artifact reduction (MAR) framework in kilo-voltage (kV) computed tomography (CT) images by combining (1) deep learning and (2) multi-modal imaging, defined as MARTIAN (Metal Artifact Reduction throughout Two-step sequentIAl deep convolutional neural Netwo...
Autores principales: | Kim, Hojin, Yoo, Sang Kyun, Kim, Dong Wook, Lee, Ho, Hong, Chae-Seon, Han, Min Cheol, Kim, Jin Sung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718791/ https://www.ncbi.nlm.nih.gov/pubmed/36460784 http://dx.doi.org/10.1038/s41598-022-25366-0 |
Ejemplares similares
-
Honeycomb Artifact Removal Using Convolutional Neural Network for Fiber Bundle Imaging
por: Kim, Eunchan, et al.
Publicado: (2022) -
Visual Interpretation of Convolutional Neural Network Predictions in Classifying Medical Image Modalities
por: Kim, Incheol, et al.
Publicado: (2019) -
Metal artifacts reduction in kV-CT images with polymetallic dentures and complex metals based on MV-CBCT images in radiotherapy
por: Ni, Xiaochen, et al.
Publicado: (2023) -
Learning to Rank Images with Cross-Modal Graph Convolutions
por: Formal, Thibault, et al.
Publicado: (2020) -
Image quality and artifacts in automated breast ultrasonography
por: Kim, Sung Hun
Publicado: (2019)