Cargando…

Multi-proxy dentition analyses reveal niche partitioning between sympatric herbivorous dinosaurs

Dentitions of the sympatric herbivorous dinosaurs Hungarosaurus (Ankylosauria, Nodosauridae) and Mochlodon (Ornithopoda, Rhabdodontidae) (Santonian, Hungary) were analysed to investigate their dietary ecology, using several complementary methods—orientation patch count, tooth replacement rate, macro...

Descripción completa

Detalles Bibliográficos
Autores principales: Ősi, Attila, Barrett, Paul M., Evans, Alistair R., Nagy, András Lajos, Szenti, Imre, Kukovecz, Ákos, Magyar, János, Segesdi, Martin, Gere, Kinga, Jó, Viviána
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718793/
https://www.ncbi.nlm.nih.gov/pubmed/36460688
http://dx.doi.org/10.1038/s41598-022-24816-z
Descripción
Sumario:Dentitions of the sympatric herbivorous dinosaurs Hungarosaurus (Ankylosauria, Nodosauridae) and Mochlodon (Ornithopoda, Rhabdodontidae) (Santonian, Hungary) were analysed to investigate their dietary ecology, using several complementary methods—orientation patch count, tooth replacement rate, macrowear, tooth wear rate, traditional microwear, and dental microwear texture analysis (DMTA). Tooth formation time is similar in Hungarosaurus and Mochlodon, and traditional and DMTA microwear features suggest low-browsing habits for both taxa, consistent with their inferred stances and body sizes. However, Mochlodon possesses a novel adaptation for increasing dental durability: the dentine on the working side of the crown is double the thickness of that on the balancing side. Moreover, crown morphology, enamel thickness, macrowear orientation, and wear rate differ greatly between the two taxa. Consequently, these sympatric herbivores probably exploited plants of different toughness, implying dietary selectivity and niche partitioning. Hungarosaurus is inferred to have eaten softer vegetation, whereas Mochlodon likely fed on tougher material. Compared to the much heavier, quadrupedal Hungarosaurus, the bipedal Mochlodon wore down more than twice as much of its crown volume during the functional life of the tooth. This heavy tooth wear might correlate with more intensive food processing and, in turn, could reflect differences in the metabolic requirements of these animals.