Cargando…
N-Omniglot, a large-scale neuromorphic dataset for spatio-temporal sparse few-shot learning
Few-shot learning (learning with a few samples) is one of the most important cognitive abilities of the human brain. However, the current artificial intelligence systems meet difficulties in achieving this ability. Similar challenges also exist for biologically plausible spiking neural networks (SNN...
Autores principales: | Li, Yang, Dong, Yiting, Zhao, Dongcheng, Zeng, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718842/ https://www.ncbi.nlm.nih.gov/pubmed/36460664 http://dx.doi.org/10.1038/s41597-022-01851-z |
Ejemplares similares
-
A spatio-temporal dataset on food flows for four West African cities
por: Karg, Hanna, et al.
Publicado: (2023) -
A spatio-temporal continuous soil moisture dataset over the Tibet Plateau from 2002 to 2015
por: Cui, Yaokui, et al.
Publicado: (2019) -
City- and county-level spatio-temporal energy consumption and efficiency datasets for China from 1997 to 2017
por: Chen, Jiandong, et al.
Publicado: (2022) -
A spatio-temporal dataset of plant pests’ first introductions across the EU and potential entry pathways
por: Rosace, Maria Chiara, et al.
Publicado: (2023) -
A large-scale dataset of in vivo pharmacology assay results
por: Hunter, Fiona M. I., et al.
Publicado: (2018)