Cargando…

The HA4M dataset: Multi-Modal Monitoring of an assembly task for Human Action recognition in Manufacturing

This paper introduces the Human Action Multi-Modal Monitoring in Manufacturing (HA4M) dataset, a collection of multi-modal data relative to actions performed by different subjects building an Epicyclic Gear Train (EGT). In particular, 41 subjects executed several trials of the assembly task, which c...

Descripción completa

Detalles Bibliográficos
Autores principales: Cicirelli, Grazia, Marani, Roberto, Romeo, Laura, Domínguez, Manuel García, Heras, Jónathan, Perri, Anna G., D’Orazio, Tiziana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718853/
https://www.ncbi.nlm.nih.gov/pubmed/36460662
http://dx.doi.org/10.1038/s41597-022-01843-z
_version_ 1784843184915873792
author Cicirelli, Grazia
Marani, Roberto
Romeo, Laura
Domínguez, Manuel García
Heras, Jónathan
Perri, Anna G.
D’Orazio, Tiziana
author_facet Cicirelli, Grazia
Marani, Roberto
Romeo, Laura
Domínguez, Manuel García
Heras, Jónathan
Perri, Anna G.
D’Orazio, Tiziana
author_sort Cicirelli, Grazia
collection PubMed
description This paper introduces the Human Action Multi-Modal Monitoring in Manufacturing (HA4M) dataset, a collection of multi-modal data relative to actions performed by different subjects building an Epicyclic Gear Train (EGT). In particular, 41 subjects executed several trials of the assembly task, which consists of 12 actions. Data were collected in a laboratory scenario using a Microsoft® Azure Kinect which integrates a depth camera, an RGB camera, and InfraRed (IR) emitters. To the best of authors’ knowledge, the HA4M dataset is the first multi-modal dataset about an assembly task containing six types of data: RGB images, Depth maps, IR images, RGB-to-Depth-Aligned images, Point Clouds and Skeleton data. These data represent a good foundation to develop and test advanced action recognition systems in several fields, including Computer Vision and Machine Learning, and application domains such as smart manufacturing and human-robot collaboration.
format Online
Article
Text
id pubmed-9718853
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-97188532022-12-04 The HA4M dataset: Multi-Modal Monitoring of an assembly task for Human Action recognition in Manufacturing Cicirelli, Grazia Marani, Roberto Romeo, Laura Domínguez, Manuel García Heras, Jónathan Perri, Anna G. D’Orazio, Tiziana Sci Data Data Descriptor This paper introduces the Human Action Multi-Modal Monitoring in Manufacturing (HA4M) dataset, a collection of multi-modal data relative to actions performed by different subjects building an Epicyclic Gear Train (EGT). In particular, 41 subjects executed several trials of the assembly task, which consists of 12 actions. Data were collected in a laboratory scenario using a Microsoft® Azure Kinect which integrates a depth camera, an RGB camera, and InfraRed (IR) emitters. To the best of authors’ knowledge, the HA4M dataset is the first multi-modal dataset about an assembly task containing six types of data: RGB images, Depth maps, IR images, RGB-to-Depth-Aligned images, Point Clouds and Skeleton data. These data represent a good foundation to develop and test advanced action recognition systems in several fields, including Computer Vision and Machine Learning, and application domains such as smart manufacturing and human-robot collaboration. Nature Publishing Group UK 2022-12-02 /pmc/articles/PMC9718853/ /pubmed/36460662 http://dx.doi.org/10.1038/s41597-022-01843-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Data Descriptor
Cicirelli, Grazia
Marani, Roberto
Romeo, Laura
Domínguez, Manuel García
Heras, Jónathan
Perri, Anna G.
D’Orazio, Tiziana
The HA4M dataset: Multi-Modal Monitoring of an assembly task for Human Action recognition in Manufacturing
title The HA4M dataset: Multi-Modal Monitoring of an assembly task for Human Action recognition in Manufacturing
title_full The HA4M dataset: Multi-Modal Monitoring of an assembly task for Human Action recognition in Manufacturing
title_fullStr The HA4M dataset: Multi-Modal Monitoring of an assembly task for Human Action recognition in Manufacturing
title_full_unstemmed The HA4M dataset: Multi-Modal Monitoring of an assembly task for Human Action recognition in Manufacturing
title_short The HA4M dataset: Multi-Modal Monitoring of an assembly task for Human Action recognition in Manufacturing
title_sort ha4m dataset: multi-modal monitoring of an assembly task for human action recognition in manufacturing
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718853/
https://www.ncbi.nlm.nih.gov/pubmed/36460662
http://dx.doi.org/10.1038/s41597-022-01843-z
work_keys_str_mv AT cicirelligrazia theha4mdatasetmultimodalmonitoringofanassemblytaskforhumanactionrecognitioninmanufacturing
AT maraniroberto theha4mdatasetmultimodalmonitoringofanassemblytaskforhumanactionrecognitioninmanufacturing
AT romeolaura theha4mdatasetmultimodalmonitoringofanassemblytaskforhumanactionrecognitioninmanufacturing
AT dominguezmanuelgarcia theha4mdatasetmultimodalmonitoringofanassemblytaskforhumanactionrecognitioninmanufacturing
AT herasjonathan theha4mdatasetmultimodalmonitoringofanassemblytaskforhumanactionrecognitioninmanufacturing
AT perriannag theha4mdatasetmultimodalmonitoringofanassemblytaskforhumanactionrecognitioninmanufacturing
AT doraziotiziana theha4mdatasetmultimodalmonitoringofanassemblytaskforhumanactionrecognitioninmanufacturing
AT cicirelligrazia ha4mdatasetmultimodalmonitoringofanassemblytaskforhumanactionrecognitioninmanufacturing
AT maraniroberto ha4mdatasetmultimodalmonitoringofanassemblytaskforhumanactionrecognitioninmanufacturing
AT romeolaura ha4mdatasetmultimodalmonitoringofanassemblytaskforhumanactionrecognitioninmanufacturing
AT dominguezmanuelgarcia ha4mdatasetmultimodalmonitoringofanassemblytaskforhumanactionrecognitioninmanufacturing
AT herasjonathan ha4mdatasetmultimodalmonitoringofanassemblytaskforhumanactionrecognitioninmanufacturing
AT perriannag ha4mdatasetmultimodalmonitoringofanassemblytaskforhumanactionrecognitioninmanufacturing
AT doraziotiziana ha4mdatasetmultimodalmonitoringofanassemblytaskforhumanactionrecognitioninmanufacturing