Cargando…

HPIPred: Host–pathogen interactome prediction with phenotypic scoring

Protein-protein interactions (PPIs) are involved in most cellular processes. Unfortunately, current knowledge of host-pathogen interactomes is still very limited. Experimental methods used to detect PPIs have several limitations, including increasing complexity and economic cost in large-scale scree...

Descripción completa

Detalles Bibliográficos
Autores principales: Macho Rendón, Javier, Rebollido-Ríos, Rocio, Torrent Burgas, Marc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718936/
https://www.ncbi.nlm.nih.gov/pubmed/36514317
http://dx.doi.org/10.1016/j.csbj.2022.11.026
Descripción
Sumario:Protein-protein interactions (PPIs) are involved in most cellular processes. Unfortunately, current knowledge of host-pathogen interactomes is still very limited. Experimental methods used to detect PPIs have several limitations, including increasing complexity and economic cost in large-scale screenings. Hence, computational methods are commonly used to support experimental data, although they generally suffer from high false-positive rates. To address this issue, we have created HPIPred, a host-pathogen PPI prediction tool based on numerical encoding of physicochemical properties. Unlike other available methods, HPIPred integrates phenotypic data to prioritize biologically meaningful results. We used HPIPred to screen the entire Homo sapiens and Pseudomonas aeruginosa PAO1 proteomes to generate a host-pathogen interactome with 763 interactions displaying a highly connected network topology. Our predictive model can be used to prioritize protein–protein interactions as potential targets for antibacterial drug development. Available at: https://github.com/SysBioUAB/hpi_predictor.