Cargando…
Traffic sign classification using CNN and detection using faster-RCNN and YOLOV4
Autonomous driving cars are becoming popular everywhere and the need for a robust traffic sign recognition system that ensures safety by recognizing traffic signs accurately and fast is increasing. In this paper, we build a CNN that can classify 43 different traffic signs from the German Traffic Sig...
Autor principal: | Youssouf, Njayou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718991/ https://www.ncbi.nlm.nih.gov/pubmed/36471847 http://dx.doi.org/10.1016/j.heliyon.2022.e11792 |
Ejemplares similares
-
COVID-19: Social distancing monitoring using faster-RCNN and YOLOv3 algorithms
por: Ahuja, Umang, et al.
Publicado: (2022) -
RTF-RCNN: An Architecture for Real-Time Tomato Plant Leaf Diseases Detection in Video Streaming Using Faster-RCNN
por: Alruwaili, Madallah, et al.
Publicado: (2022) -
Face mask detection using YOLOv3 and faster R-CNN models: COVID-19 environment
por: Singh, Sunil, et al.
Publicado: (2021) -
Multiscale Traffic Sign Detection Method in Complex Environment Based on YOLOv4
por: Wang, Yongjie, et al.
Publicado: (2022) -
Faster RCNN‐based detection of cervical spinal cord injury and disc degeneration
por: Ma, Shaolong, et al.
Publicado: (2020)