Cargando…

MRI-based radiomics to predict neoadjuvant chemoradiotherapy outcomes in locally advanced rectal cancer: A multicenter study

BACKGROUND AND PURPOSE: Predicting tumour response would be useful for selecting patients with locally advanced rectal cancer (LARC) for organ preservation strategies. We aimed to develop and validate a prediction model for T downstaging (ypT0-2) in LARC patients after neoadjuvant chemoradiotherapy...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiang, Yirong, Li, Shuai, Wang, Hongzhi, Song, Maxiaowei, Hu, Ke, Wang, Fengwei, Wang, Zhi, Niu, Zhiyong, Liu, Jin, Cai, Yong, Li, Yongheng, Zhu, Xianggao, Geng, Jianhao, Zhang, Yangzi, Teng, Huajing, Wang, Weihu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719068/
https://www.ncbi.nlm.nih.gov/pubmed/36471751
http://dx.doi.org/10.1016/j.ctro.2022.11.009
Descripción
Sumario:BACKGROUND AND PURPOSE: Predicting tumour response would be useful for selecting patients with locally advanced rectal cancer (LARC) for organ preservation strategies. We aimed to develop and validate a prediction model for T downstaging (ypT0-2) in LARC patients after neoadjuvant chemoradiotherapy and to identify those who may benefit from consolidation chemotherapy. MATERIALS AND METHODS: cT3-4 LARC patients at three tertiary medical centers from January 2012 to January 2019 were retrospectively included, while a prospective cohort was recruited from June 2021 to March 2022. Eight filter (principal component analysis, least absolute shrinkage and selection operator, partial least-squares discriminant analysis, random forest)-classifier (support vector machine, logistic regression) models were established to select radiomic features. A nomogram combining radiomics and significant clinical features was developed and validated by calibration curve and decision curve analysis. Interaction test was conducted to investigate the consolidation chemotherapy benefits. RESULTS: A total of 634 patients were included (426 in training cohort, 174 in testing cohort and 34 in prospective cohort). A radiomic prediction model using partial least-squares discriminant analysis and a support vector machine showed the best performance (AUC: 0.832 [training]; 0.763 [testing]). A nomogram combining radiomics and clinical features showed significantly better prognostic performance (AUC: 0.842 [training]; 0.809 [testing]) than the radiomic model. The model was also tested in the prospective cohort with AUC 0.727. High-probability group (score > 81.82) may have potential benefits from ≥ 4 cycles consolidation chemotherapy (OR: 4.173, 95 % CI: 0.953–18.276, p = 0.058, p(interaction) = 0.021). CONCLUSION: We identified and validated a model based on multicenter pre-treatment radiomics to predict ypT0-2 in cT3-4 LARC patients, which may facilitate individualised treatment decision-making for organ-preservation strategies and consolidation chemotherapy.