Cargando…
Nutrient-doped synthetic silicates for enhanced weathering, remineralization and fertilization on agricultural lands of global cold regions – A perspective on the research ahead
There is now a dire demand for negative emissions technologies (which sequester CO(2) from the atmosphere) that can be rapidly deployed, are scalable, and are demonstrably safe and effective. Enhanced weathering of silicate minerals has demonstrated a significant potential for CO(2) capture and sequ...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719083/ https://www.ncbi.nlm.nih.gov/pubmed/36471804 http://dx.doi.org/10.1016/j.isci.2022.105556 |
_version_ | 1784843238489718784 |
---|---|
author | Hicks, Andrea Dholabhai, Pratik Ali, Asif Santos, Rafael M. |
author_facet | Hicks, Andrea Dholabhai, Pratik Ali, Asif Santos, Rafael M. |
author_sort | Hicks, Andrea |
collection | PubMed |
description | There is now a dire demand for negative emissions technologies (which sequester CO(2) from the atmosphere) that can be rapidly deployed, are scalable, and are demonstrably safe and effective. Enhanced weathering of silicate minerals has demonstrated a significant potential for CO(2) capture and sequestration by the formation of pedogenic carbonates in soils, subsoils, and sediments. This technique has also been shown to deliver fruitful results in terms of improving soil health, and in turn plant health, through remineralization. The silicate minerals that possess the highest weathering rates (e.g., wollastonite), are relatively rare in nature, whereas the abundant ones (e.g., anorthite and forsterite) have a slower pace of weathering, especially in colder and drier climates such as found in the extensive agricultural lands of Western Canada and the Western United States. Herein, we offer a perspective on the opportunities for computational studies targeting atomic-scale interaction of CO(2) with silicates and synthesis of fast-weathering silicates (such as larnite and bredigite), whose composition can be tuned to also support soil fertilization and remineralization, and whose production must be integrated with green and carbon-neutral technologies to ensure net-negative life cycle emissions. |
format | Online Article Text |
id | pubmed-9719083 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-97190832022-12-04 Nutrient-doped synthetic silicates for enhanced weathering, remineralization and fertilization on agricultural lands of global cold regions – A perspective on the research ahead Hicks, Andrea Dholabhai, Pratik Ali, Asif Santos, Rafael M. iScience Perspective There is now a dire demand for negative emissions technologies (which sequester CO(2) from the atmosphere) that can be rapidly deployed, are scalable, and are demonstrably safe and effective. Enhanced weathering of silicate minerals has demonstrated a significant potential for CO(2) capture and sequestration by the formation of pedogenic carbonates in soils, subsoils, and sediments. This technique has also been shown to deliver fruitful results in terms of improving soil health, and in turn plant health, through remineralization. The silicate minerals that possess the highest weathering rates (e.g., wollastonite), are relatively rare in nature, whereas the abundant ones (e.g., anorthite and forsterite) have a slower pace of weathering, especially in colder and drier climates such as found in the extensive agricultural lands of Western Canada and the Western United States. Herein, we offer a perspective on the opportunities for computational studies targeting atomic-scale interaction of CO(2) with silicates and synthesis of fast-weathering silicates (such as larnite and bredigite), whose composition can be tuned to also support soil fertilization and remineralization, and whose production must be integrated with green and carbon-neutral technologies to ensure net-negative life cycle emissions. Elsevier 2022-11-13 /pmc/articles/PMC9719083/ /pubmed/36471804 http://dx.doi.org/10.1016/j.isci.2022.105556 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Perspective Hicks, Andrea Dholabhai, Pratik Ali, Asif Santos, Rafael M. Nutrient-doped synthetic silicates for enhanced weathering, remineralization and fertilization on agricultural lands of global cold regions – A perspective on the research ahead |
title | Nutrient-doped synthetic silicates for enhanced weathering, remineralization and fertilization on agricultural lands of global cold regions – A perspective on the research ahead |
title_full | Nutrient-doped synthetic silicates for enhanced weathering, remineralization and fertilization on agricultural lands of global cold regions – A perspective on the research ahead |
title_fullStr | Nutrient-doped synthetic silicates for enhanced weathering, remineralization and fertilization on agricultural lands of global cold regions – A perspective on the research ahead |
title_full_unstemmed | Nutrient-doped synthetic silicates for enhanced weathering, remineralization and fertilization on agricultural lands of global cold regions – A perspective on the research ahead |
title_short | Nutrient-doped synthetic silicates for enhanced weathering, remineralization and fertilization on agricultural lands of global cold regions – A perspective on the research ahead |
title_sort | nutrient-doped synthetic silicates for enhanced weathering, remineralization and fertilization on agricultural lands of global cold regions – a perspective on the research ahead |
topic | Perspective |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719083/ https://www.ncbi.nlm.nih.gov/pubmed/36471804 http://dx.doi.org/10.1016/j.isci.2022.105556 |
work_keys_str_mv | AT hicksandrea nutrientdopedsyntheticsilicatesforenhancedweatheringremineralizationandfertilizationonagriculturallandsofglobalcoldregionsaperspectiveontheresearchahead AT dholabhaipratik nutrientdopedsyntheticsilicatesforenhancedweatheringremineralizationandfertilizationonagriculturallandsofglobalcoldregionsaperspectiveontheresearchahead AT aliasif nutrientdopedsyntheticsilicatesforenhancedweatheringremineralizationandfertilizationonagriculturallandsofglobalcoldregionsaperspectiveontheresearchahead AT santosrafaelm nutrientdopedsyntheticsilicatesforenhancedweatheringremineralizationandfertilizationonagriculturallandsofglobalcoldregionsaperspectiveontheresearchahead |