Cargando…

Genetic variant in miR-17-92 cluster binding sites is associated with esophageal squamous cell carcinoma risk in Chinese population

BACKGROUND: Single nucleotide polymorphisms (SNPs) located in microRNA (miRNA) binding sites can affect the interactions between miRNAs and target genes, which is related to cancer susceptibility and tumorigenesis. However, the association between SNPs located in miR-17-92 cluster binding sites and...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Yi, Shao, Yi, Ruan, Xiaoli, Zhu, Lingyan, Zang, Zhaoping, Wei, Tong, Nakyeyune, Rena, Wei, Wenqiang, Liu, Fen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719157/
https://www.ncbi.nlm.nih.gov/pubmed/36461008
http://dx.doi.org/10.1186/s12885-022-10360-6
Descripción
Sumario:BACKGROUND: Single nucleotide polymorphisms (SNPs) located in microRNA (miRNA) binding sites can affect the interactions between miRNAs and target genes, which is related to cancer susceptibility and tumorigenesis. However, the association between SNPs located in miR-17-92 cluster binding sites and ESCC risk remains unclear. Therefore, we aimed to explore the relationship between polymorphisms in miR-17-92 cluster binding sites and ESCC susceptibility. METHODS: Six SNPs in the binding sites of miR-17-92 cluster were selected using bioinformatics databases, and their association with ESCC risk was investigated in a case-control study (including 488 cases and 512 controls) based on the population from high incidence areas of ESCC in China. We evaluated the SNP-SNP and SNP-smoking interactions using generalized multifactor dimensionality reduction (GMDR). Moreover, the expression of the miR-17-92 cluster and its target genes was determined in ESCC and adjacent normal tissues by quantitative real-time polymerase chain reaction (qRT-PCR). The dual-luciferase reporter assay was conducted to verify the effect of SNPs on the binding affinity between miRNAs and target genes. RESULTS: We found that the SNP rs1804506 C > T had a significant association with the decreased ESCC risk. The SNP rs1804506 T allele was associated with a significantly decreased risk of ESCC in the additive model (OR = 0.817, 95% CI = 0.681–0.981, P = 0.030). The rs1804506 T allele had more striking effects on reducing ESCC risk in older individuals, female or non-smoker subgroups. We also found a significant interaction effect between rs1366600 and smoking by GMDR methods (P = 0.011). Additionally, the expression levels of miR-19a-3p and TGFBR3 were significantly downregulated in ESCC tissues compared with normal tissues, and the carriers of rs1804506 TT genotype had lower expression level of TGFBR3 than those of rs1804506 CC/CT genotype. Following dual-luciferase reporter assay showed that the rs1804506 T allele reduced the binding of miR-19a-3p and TGFBR3 3′-UTR. CONCLUSIONS: Our findings suggest that the rs1804506 polymorphism in miR-17-92 cluster binding sites contributes to the susceptibility of ESCC, which might provide new clues and scientific evidence for the etiology and biomarkers for the prevention and treatment of ESCC. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12885-022-10360-6.