Cargando…
CBMS-9 INFLUENCE OF HYPOXIA ON PHOTODYNAMIC THERAPY WITH 5-AMINOLEVULINIC ACID FOR MALIGNANT GLIOMA STEM CELLS
BACKGROUND: Glioblastoma is a highly malignant brain tumor refractory to standard treatment and its refractoriness is attributed to the presence of a small number of glioma stem cells (GSCs) that survive in a harsh microenvironment. The aim of this study was to investigate the effect of hypoxic cond...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719346/ http://dx.doi.org/10.1093/noajnl/vdac167.005 |
_version_ | 1784843303632502784 |
---|---|
author | Nonoguchi, Naosuke Ihata, Tomohiro Omura, Naoki Wanibuchi, Masahiko |
author_facet | Nonoguchi, Naosuke Ihata, Tomohiro Omura, Naoki Wanibuchi, Masahiko |
author_sort | Nonoguchi, Naosuke |
collection | PubMed |
description | BACKGROUND: Glioblastoma is a highly malignant brain tumor refractory to standard treatment and its refractoriness is attributed to the presence of a small number of glioma stem cells (GSCs) that survive in a harsh microenvironment. The aim of this study was to investigate the effect of hypoxic conditions on the sensitivity of GSCs to 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT). MATERIALS AND METHODS: Six human GSClines: three GSCs classified as Mesenchymal subtype and three GSCs classified as Proneural subtype, were divided into normoxia-GSCs (O2: 21%) and hypoxia-GSCs (O2: 5%) groups. To compare the effects of different oxygen partial pressures on protoporphyrin-IX (PpIX) biosynthetic activity, the expression levels of PpIX biosynthetic enzymes and transporters were examined by qRT-PCR and intracellular PpIX concentration was measured by flow cytometry. In addition, the sensitivity of these two cell groups to ALA-PDT was assessed in vitro. RESULTS: Hypoxia-GSCs showed higher mRNA levels of FECH (ferrochelatase), which is required for iron synthesis to convert PpIX to haem, compared to Normoxia-GSCs. Flow cytometry revealed that the accumulation of PpIX from exogenous ALA in Hypoxia-GSCs was reduced compared to in Normoxia-GSCs. Despite this, no Hypoxia-GSC lines showed significantly reduced sensitivity to ALA-PDT compared to Normoxia-GSCs. CONCLUSION: Hypoxia-GSCs had lower intracellular PpIX accumulation than Normoxia-GSCs due to increased gene expression of FECH, and that their sensitivity to ALA- PDT was reduced less, despite accumulating lower concentrations of PpIX. ALA-PDT is at least a potentially effective therapy for hypoxia-tolerant GSCs that exist in hypoxia at 5% oxygen concentration. |
format | Online Article Text |
id | pubmed-9719346 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-97193462022-12-06 CBMS-9 INFLUENCE OF HYPOXIA ON PHOTODYNAMIC THERAPY WITH 5-AMINOLEVULINIC ACID FOR MALIGNANT GLIOMA STEM CELLS Nonoguchi, Naosuke Ihata, Tomohiro Omura, Naoki Wanibuchi, Masahiko Neurooncol Adv Abstracts BACKGROUND: Glioblastoma is a highly malignant brain tumor refractory to standard treatment and its refractoriness is attributed to the presence of a small number of glioma stem cells (GSCs) that survive in a harsh microenvironment. The aim of this study was to investigate the effect of hypoxic conditions on the sensitivity of GSCs to 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT). MATERIALS AND METHODS: Six human GSClines: three GSCs classified as Mesenchymal subtype and three GSCs classified as Proneural subtype, were divided into normoxia-GSCs (O2: 21%) and hypoxia-GSCs (O2: 5%) groups. To compare the effects of different oxygen partial pressures on protoporphyrin-IX (PpIX) biosynthetic activity, the expression levels of PpIX biosynthetic enzymes and transporters were examined by qRT-PCR and intracellular PpIX concentration was measured by flow cytometry. In addition, the sensitivity of these two cell groups to ALA-PDT was assessed in vitro. RESULTS: Hypoxia-GSCs showed higher mRNA levels of FECH (ferrochelatase), which is required for iron synthesis to convert PpIX to haem, compared to Normoxia-GSCs. Flow cytometry revealed that the accumulation of PpIX from exogenous ALA in Hypoxia-GSCs was reduced compared to in Normoxia-GSCs. Despite this, no Hypoxia-GSC lines showed significantly reduced sensitivity to ALA-PDT compared to Normoxia-GSCs. CONCLUSION: Hypoxia-GSCs had lower intracellular PpIX accumulation than Normoxia-GSCs due to increased gene expression of FECH, and that their sensitivity to ALA- PDT was reduced less, despite accumulating lower concentrations of PpIX. ALA-PDT is at least a potentially effective therapy for hypoxia-tolerant GSCs that exist in hypoxia at 5% oxygen concentration. Oxford University Press 2022-12-03 /pmc/articles/PMC9719346/ http://dx.doi.org/10.1093/noajnl/vdac167.005 Text en © The Author(s) 2022. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Abstracts Nonoguchi, Naosuke Ihata, Tomohiro Omura, Naoki Wanibuchi, Masahiko CBMS-9 INFLUENCE OF HYPOXIA ON PHOTODYNAMIC THERAPY WITH 5-AMINOLEVULINIC ACID FOR MALIGNANT GLIOMA STEM CELLS |
title | CBMS-9 INFLUENCE OF HYPOXIA ON PHOTODYNAMIC THERAPY WITH 5-AMINOLEVULINIC ACID FOR MALIGNANT GLIOMA STEM CELLS |
title_full | CBMS-9 INFLUENCE OF HYPOXIA ON PHOTODYNAMIC THERAPY WITH 5-AMINOLEVULINIC ACID FOR MALIGNANT GLIOMA STEM CELLS |
title_fullStr | CBMS-9 INFLUENCE OF HYPOXIA ON PHOTODYNAMIC THERAPY WITH 5-AMINOLEVULINIC ACID FOR MALIGNANT GLIOMA STEM CELLS |
title_full_unstemmed | CBMS-9 INFLUENCE OF HYPOXIA ON PHOTODYNAMIC THERAPY WITH 5-AMINOLEVULINIC ACID FOR MALIGNANT GLIOMA STEM CELLS |
title_short | CBMS-9 INFLUENCE OF HYPOXIA ON PHOTODYNAMIC THERAPY WITH 5-AMINOLEVULINIC ACID FOR MALIGNANT GLIOMA STEM CELLS |
title_sort | cbms-9 influence of hypoxia on photodynamic therapy with 5-aminolevulinic acid for malignant glioma stem cells |
topic | Abstracts |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719346/ http://dx.doi.org/10.1093/noajnl/vdac167.005 |
work_keys_str_mv | AT nonoguchinaosuke cbms9influenceofhypoxiaonphotodynamictherapywith5aminolevulinicacidformalignantgliomastemcells AT ihatatomohiro cbms9influenceofhypoxiaonphotodynamictherapywith5aminolevulinicacidformalignantgliomastemcells AT omuranaoki cbms9influenceofhypoxiaonphotodynamictherapywith5aminolevulinicacidformalignantgliomastemcells AT wanibuchimasahiko cbms9influenceofhypoxiaonphotodynamictherapywith5aminolevulinicacidformalignantgliomastemcells |