Cargando…
Confounds in the Data—Comments on “Decoding Brain Representations by Multimodal Learning of Neural Activity and Visual Features”
Neuroimaging experiments in general, and EEG experiments in particular, must take care to avoid confounds. A recent TPAMI paper uses data that suffers from a serious previously reported confound. We demonstrate that their new model and analysis methods do not remedy this confound, and therefore that...
Autores principales: | Ahmed, Hamad, Wilbur, Ronnie B., Bharadwaj, Hari M., Siskind, Jeffrey Mark |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719395/ https://www.ncbi.nlm.nih.gov/pubmed/34665721 http://dx.doi.org/10.1109/TPAMI.2021.3121268 |
Ejemplares similares
-
Eye Movement-Related Confounds in Neural Decoding of Visual Working Memory Representations
por: Mostert, Pim, et al.
Publicado: (2018) -
Decoding of the neural representation of the visual RGB color model
por: Wu, Yijia, et al.
Publicado: (2023) -
Hierarchical Neural Representation of Dreamed Objects Revealed by Brain Decoding with Deep Neural Network Features
por: Horikawa, Tomoyasu, et al.
Publicado: (2017) -
Decoding the information structure underlying the neural representation of concepts
por: Fernandino, Leonardo, et al.
Publicado: (2022) -
Visual form of ASL verb signs predicts non-signer judgment of transitivity
por: Bradley, Chuck, et al.
Publicado: (2022)