Cargando…
Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for Alzheimer’s disease
Tissue development and disease lead to changes in cellular organization, nuclear morphology, and gene expression, which can be jointly measured by spatial transcriptomic technologies. However, methods for jointly analyzing the different spatial data modalities in 3D are still lacking. We present a c...
Autores principales: | Zhang, Xinyi, Wang, Xiao, Shivashankar, G. V., Uhler, Caroline |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719477/ https://www.ncbi.nlm.nih.gov/pubmed/36463283 http://dx.doi.org/10.1038/s41467-022-35233-1 |
Ejemplares similares
-
Predicting cell lineages using autoencoders and optimal transport
por: Yang, Karren Dai, et al.
Publicado: (2020) -
Multi-domain translation between single-cell imaging and sequencing data using autoencoders
por: Yang, Karren Dai, et al.
Publicado: (2021) -
Deciphering tissue heterogeneity from spatially resolved transcriptomics by the autoencoder-assisted graph convolutional neural network
por: Li, Xinxing, et al.
Publicado: (2023) -
Drug-target interaction prediction based on spatial consistency constraint and graph convolutional autoencoder
por: Chen, Peng, et al.
Publicado: (2023) -
Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model
por: Wang, Jiacheng, et al.
Publicado: (2023)