Cargando…

A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations

Aging is a process of progressive change. To develop biological models of aging, longitudinal datasets with high temporal resolution are needed. Here we report a multi-omics longitudinal dataset for cultured primary human fibroblasts measured across their replicative lifespans. Fibroblasts were sour...

Descripción completa

Detalles Bibliográficos
Autores principales: Sturm, Gabriel, Monzel, Anna S., Karan, Kalpita R., Michelson, Jeremy, Ware, Sarah A., Cardenas, Andres, Lin, Jue, Bris, Céline, Santhanam, Balaji, Murphy, Michael P., Levine, Morgan E., Horvath, Steve, Belsky, Daniel W., Wang, Shuang, Procaccio, Vincent, Kaufman, Brett A., Hirano, Michio, Picard, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719499/
https://www.ncbi.nlm.nih.gov/pubmed/36463290
http://dx.doi.org/10.1038/s41597-022-01852-y
_version_ 1784843334583320576
author Sturm, Gabriel
Monzel, Anna S.
Karan, Kalpita R.
Michelson, Jeremy
Ware, Sarah A.
Cardenas, Andres
Lin, Jue
Bris, Céline
Santhanam, Balaji
Murphy, Michael P.
Levine, Morgan E.
Horvath, Steve
Belsky, Daniel W.
Wang, Shuang
Procaccio, Vincent
Kaufman, Brett A.
Hirano, Michio
Picard, Martin
author_facet Sturm, Gabriel
Monzel, Anna S.
Karan, Kalpita R.
Michelson, Jeremy
Ware, Sarah A.
Cardenas, Andres
Lin, Jue
Bris, Céline
Santhanam, Balaji
Murphy, Michael P.
Levine, Morgan E.
Horvath, Steve
Belsky, Daniel W.
Wang, Shuang
Procaccio, Vincent
Kaufman, Brett A.
Hirano, Michio
Picard, Martin
author_sort Sturm, Gabriel
collection PubMed
description Aging is a process of progressive change. To develop biological models of aging, longitudinal datasets with high temporal resolution are needed. Here we report a multi-omics longitudinal dataset for cultured primary human fibroblasts measured across their replicative lifespans. Fibroblasts were sourced from both healthy donors (n = 6) and individuals with lifespan-shortening mitochondrial disease (n = 3). The dataset includes cytological, bioenergetic, DNA methylation, gene expression, secreted proteins, mitochondrial DNA copy number and mutations, cell-free DNA, telomere length, and whole-genome sequencing data. This dataset enables the bridging of mechanistic processes of aging as outlined by the “hallmarks of aging”, with the descriptive characterization of aging such as epigenetic age clocks. Here we focus on bridging the gap for the hallmark mitochondrial metabolism. Our dataset includes measurement of healthy cells, and cells subjected to over a dozen experimental manipulations targeting oxidative phosphorylation (OxPhos), glycolysis, and glucocorticoid signaling, among others. These experiments provide opportunities to test how cellular energetics affect the biology of cellular aging. All data are publicly available at our webtool: https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study/
format Online
Article
Text
id pubmed-9719499
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-97194992022-12-05 A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations Sturm, Gabriel Monzel, Anna S. Karan, Kalpita R. Michelson, Jeremy Ware, Sarah A. Cardenas, Andres Lin, Jue Bris, Céline Santhanam, Balaji Murphy, Michael P. Levine, Morgan E. Horvath, Steve Belsky, Daniel W. Wang, Shuang Procaccio, Vincent Kaufman, Brett A. Hirano, Michio Picard, Martin Sci Data Data Descriptor Aging is a process of progressive change. To develop biological models of aging, longitudinal datasets with high temporal resolution are needed. Here we report a multi-omics longitudinal dataset for cultured primary human fibroblasts measured across their replicative lifespans. Fibroblasts were sourced from both healthy donors (n = 6) and individuals with lifespan-shortening mitochondrial disease (n = 3). The dataset includes cytological, bioenergetic, DNA methylation, gene expression, secreted proteins, mitochondrial DNA copy number and mutations, cell-free DNA, telomere length, and whole-genome sequencing data. This dataset enables the bridging of mechanistic processes of aging as outlined by the “hallmarks of aging”, with the descriptive characterization of aging such as epigenetic age clocks. Here we focus on bridging the gap for the hallmark mitochondrial metabolism. Our dataset includes measurement of healthy cells, and cells subjected to over a dozen experimental manipulations targeting oxidative phosphorylation (OxPhos), glycolysis, and glucocorticoid signaling, among others. These experiments provide opportunities to test how cellular energetics affect the biology of cellular aging. All data are publicly available at our webtool: https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study/ Nature Publishing Group UK 2022-12-03 /pmc/articles/PMC9719499/ /pubmed/36463290 http://dx.doi.org/10.1038/s41597-022-01852-y Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Data Descriptor
Sturm, Gabriel
Monzel, Anna S.
Karan, Kalpita R.
Michelson, Jeremy
Ware, Sarah A.
Cardenas, Andres
Lin, Jue
Bris, Céline
Santhanam, Balaji
Murphy, Michael P.
Levine, Morgan E.
Horvath, Steve
Belsky, Daniel W.
Wang, Shuang
Procaccio, Vincent
Kaufman, Brett A.
Hirano, Michio
Picard, Martin
A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations
title A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations
title_full A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations
title_fullStr A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations
title_full_unstemmed A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations
title_short A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations
title_sort multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719499/
https://www.ncbi.nlm.nih.gov/pubmed/36463290
http://dx.doi.org/10.1038/s41597-022-01852-y
work_keys_str_mv AT sturmgabriel amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT monzelannas amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT karankalpitar amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT michelsonjeremy amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT waresaraha amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT cardenasandres amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT linjue amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT brisceline amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT santhanambalaji amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT murphymichaelp amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT levinemorgane amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT horvathsteve amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT belskydanielw amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT wangshuang amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT procacciovincent amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT kaufmanbretta amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT hiranomichio amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT picardmartin amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT sturmgabriel multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT monzelannas multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT karankalpitar multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT michelsonjeremy multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT waresaraha multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT cardenasandres multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT linjue multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT brisceline multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT santhanambalaji multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT murphymichaelp multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT levinemorgane multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT horvathsteve multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT belskydanielw multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT wangshuang multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT procacciovincent multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT kaufmanbretta multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT hiranomichio multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations
AT picardmartin multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations