Cargando…
A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations
Aging is a process of progressive change. To develop biological models of aging, longitudinal datasets with high temporal resolution are needed. Here we report a multi-omics longitudinal dataset for cultured primary human fibroblasts measured across their replicative lifespans. Fibroblasts were sour...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719499/ https://www.ncbi.nlm.nih.gov/pubmed/36463290 http://dx.doi.org/10.1038/s41597-022-01852-y |
_version_ | 1784843334583320576 |
---|---|
author | Sturm, Gabriel Monzel, Anna S. Karan, Kalpita R. Michelson, Jeremy Ware, Sarah A. Cardenas, Andres Lin, Jue Bris, Céline Santhanam, Balaji Murphy, Michael P. Levine, Morgan E. Horvath, Steve Belsky, Daniel W. Wang, Shuang Procaccio, Vincent Kaufman, Brett A. Hirano, Michio Picard, Martin |
author_facet | Sturm, Gabriel Monzel, Anna S. Karan, Kalpita R. Michelson, Jeremy Ware, Sarah A. Cardenas, Andres Lin, Jue Bris, Céline Santhanam, Balaji Murphy, Michael P. Levine, Morgan E. Horvath, Steve Belsky, Daniel W. Wang, Shuang Procaccio, Vincent Kaufman, Brett A. Hirano, Michio Picard, Martin |
author_sort | Sturm, Gabriel |
collection | PubMed |
description | Aging is a process of progressive change. To develop biological models of aging, longitudinal datasets with high temporal resolution are needed. Here we report a multi-omics longitudinal dataset for cultured primary human fibroblasts measured across their replicative lifespans. Fibroblasts were sourced from both healthy donors (n = 6) and individuals with lifespan-shortening mitochondrial disease (n = 3). The dataset includes cytological, bioenergetic, DNA methylation, gene expression, secreted proteins, mitochondrial DNA copy number and mutations, cell-free DNA, telomere length, and whole-genome sequencing data. This dataset enables the bridging of mechanistic processes of aging as outlined by the “hallmarks of aging”, with the descriptive characterization of aging such as epigenetic age clocks. Here we focus on bridging the gap for the hallmark mitochondrial metabolism. Our dataset includes measurement of healthy cells, and cells subjected to over a dozen experimental manipulations targeting oxidative phosphorylation (OxPhos), glycolysis, and glucocorticoid signaling, among others. These experiments provide opportunities to test how cellular energetics affect the biology of cellular aging. All data are publicly available at our webtool: https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study/ |
format | Online Article Text |
id | pubmed-9719499 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-97194992022-12-05 A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations Sturm, Gabriel Monzel, Anna S. Karan, Kalpita R. Michelson, Jeremy Ware, Sarah A. Cardenas, Andres Lin, Jue Bris, Céline Santhanam, Balaji Murphy, Michael P. Levine, Morgan E. Horvath, Steve Belsky, Daniel W. Wang, Shuang Procaccio, Vincent Kaufman, Brett A. Hirano, Michio Picard, Martin Sci Data Data Descriptor Aging is a process of progressive change. To develop biological models of aging, longitudinal datasets with high temporal resolution are needed. Here we report a multi-omics longitudinal dataset for cultured primary human fibroblasts measured across their replicative lifespans. Fibroblasts were sourced from both healthy donors (n = 6) and individuals with lifespan-shortening mitochondrial disease (n = 3). The dataset includes cytological, bioenergetic, DNA methylation, gene expression, secreted proteins, mitochondrial DNA copy number and mutations, cell-free DNA, telomere length, and whole-genome sequencing data. This dataset enables the bridging of mechanistic processes of aging as outlined by the “hallmarks of aging”, with the descriptive characterization of aging such as epigenetic age clocks. Here we focus on bridging the gap for the hallmark mitochondrial metabolism. Our dataset includes measurement of healthy cells, and cells subjected to over a dozen experimental manipulations targeting oxidative phosphorylation (OxPhos), glycolysis, and glucocorticoid signaling, among others. These experiments provide opportunities to test how cellular energetics affect the biology of cellular aging. All data are publicly available at our webtool: https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study/ Nature Publishing Group UK 2022-12-03 /pmc/articles/PMC9719499/ /pubmed/36463290 http://dx.doi.org/10.1038/s41597-022-01852-y Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Data Descriptor Sturm, Gabriel Monzel, Anna S. Karan, Kalpita R. Michelson, Jeremy Ware, Sarah A. Cardenas, Andres Lin, Jue Bris, Céline Santhanam, Balaji Murphy, Michael P. Levine, Morgan E. Horvath, Steve Belsky, Daniel W. Wang, Shuang Procaccio, Vincent Kaufman, Brett A. Hirano, Michio Picard, Martin A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations |
title | A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations |
title_full | A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations |
title_fullStr | A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations |
title_full_unstemmed | A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations |
title_short | A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations |
title_sort | multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations |
topic | Data Descriptor |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719499/ https://www.ncbi.nlm.nih.gov/pubmed/36463290 http://dx.doi.org/10.1038/s41597-022-01852-y |
work_keys_str_mv | AT sturmgabriel amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT monzelannas amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT karankalpitar amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT michelsonjeremy amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT waresaraha amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT cardenasandres amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT linjue amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT brisceline amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT santhanambalaji amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT murphymichaelp amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT levinemorgane amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT horvathsteve amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT belskydanielw amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT wangshuang amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT procacciovincent amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT kaufmanbretta amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT hiranomichio amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT picardmartin amultiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT sturmgabriel multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT monzelannas multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT karankalpitar multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT michelsonjeremy multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT waresaraha multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT cardenasandres multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT linjue multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT brisceline multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT santhanambalaji multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT murphymichaelp multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT levinemorgane multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT horvathsteve multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT belskydanielw multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT wangshuang multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT procacciovincent multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT kaufmanbretta multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT hiranomichio multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations AT picardmartin multiomicslongitudinalagingdatasetinprimaryhumanfibroblastswithmitochondrialperturbations |