Cargando…
Introducing ligand GA, a genetic algorithm molecular tool for automated protein inhibitor design
Ligand GA is introduced in this work and approaches the problem of finding small molecules inhibiting protein functions by using the protein site to find close to optimal or optimal small molecule binders. Genetic algorithms (GA) are an effective means for approximating or solving computationally ha...
Autor principal: | Chalmers, Gordon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719503/ https://www.ncbi.nlm.nih.gov/pubmed/36463310 http://dx.doi.org/10.1038/s41598-022-22281-2 |
Ejemplares similares
-
A molecular evolution algorithm for ligand design in DOCK
por: Prentis, Lauren E., et al.
Publicado: (2022) -
GA-MADRID: design and validation of a machine learning tool for the diagnosis of Alzheimer’s disease and frontotemporal dementia using genetic algorithms
por: García-Gutierrez, Fernando, et al.
Publicado: (2022) -
Automated design of ligands to polypharmacological profiles
por: Besnard, Jérémy, et al.
Publicado: (2012) -
Proteochemometric Modeling of the Bioactivity Spectra of HIV-1 Protease Inhibitors by Introducing Protein-Ligand Interaction Fingerprint
por: Huang, Qi, et al.
Publicado: (2012) -
GA-based Design Algorithms for the Robust Synthetic Genetic Oscillators with Prescribed Amplitude, Period and Phase
por: Chen, Bor-Sen, et al.
Publicado: (2010)