Cargando…

The oocyte cumulus complex regulates mouse sperm migration in the oviduct

As the time of ovulation draws near, mouse spermatozoa move out of the isthmic reservoir, which is a prerequisite for fertilization. However, the molecular mechanism remains unclear. The present study revealed that mouse cumulus cells of oocytes–cumulus complexes (OCCs) expressed transforming growth...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zhijuan, Wei, Hongwei, Wu, Zhanying, Zhang, Xiaodan, Sun, Yanli, Gao, Longwei, Zhang, Wenqing, Su, You-Qiang, Zhang, Meijia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719508/
https://www.ncbi.nlm.nih.gov/pubmed/36463362
http://dx.doi.org/10.1038/s42003-022-04287-8
Descripción
Sumario:As the time of ovulation draws near, mouse spermatozoa move out of the isthmic reservoir, which is a prerequisite for fertilization. However, the molecular mechanism remains unclear. The present study revealed that mouse cumulus cells of oocytes–cumulus complexes (OCCs) expressed transforming growth factor-β ligand 1 (TGFB1), whereas ampullary epithelial cells expressed the TGF-β receptors, TGFBR1 and TGFBR2, and all were upregulated by luteinizing hormone (LH)/human chorionic gonadotropin (hCG). OCCs and TGFB1 increased natriuretic peptide type C (NPPC) expression in cultured ampullae via TGF-β signaling, and NPPC treatment promoted spermatozoa moving out of the isthmic reservoir of the preovulatory oviducts. Deletion of Tgfb1 in cumulus cells and Tgfbr2 in ampullary epithelial cells blocked OCC-induced NPPC expression and spermatozoa moving out of the isthmic reservoir, resulting in compromised fertilization and fertility. Oocyte-derived paracrine factors were required for promoting cumulus cell expression of TGFB1. Therefore, oocyte-dependent and cumulus cell-derived TGFB1 promotes the expression of NPPC in oviductal ampulla, which is critical for sperm migration in the oviduct and subsequent fertilization.