Cargando…

Hypergraph geometry reflects higher-order dynamics in protein interaction networks

Protein interactions form a complex dynamic molecular system that shapes cell phenotype and function; in this regard, network analysis is a powerful tool for studying the dynamics of cellular processes. Current models of protein interaction networks are limited in that the standard graph model can o...

Descripción completa

Detalles Bibliográficos
Autores principales: Murgas, Kevin A., Saucan, Emil, Sandhu, Romeil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719542/
https://www.ncbi.nlm.nih.gov/pubmed/36463292
http://dx.doi.org/10.1038/s41598-022-24584-w
Descripción
Sumario:Protein interactions form a complex dynamic molecular system that shapes cell phenotype and function; in this regard, network analysis is a powerful tool for studying the dynamics of cellular processes. Current models of protein interaction networks are limited in that the standard graph model can only represent pairwise relationships. Higher-order interactions are well-characterized in biology, including protein complex formation and feedback or feedforward loops. These higher-order relationships are better represented by a hypergraph as a generalized network model. Here, we present an approach to analyzing dynamic gene expression data using a hypergraph model and quantify network heterogeneity via Forman-Ricci curvature. We observe, on a global level, increased network curvature in pluripotent stem cells and cancer cells. Further, we use local curvature to conduct pathway analysis in a melanoma dataset, finding increased curvature in several oncogenic pathways and decreased curvature in tumor suppressor pathways. We compare this approach to a graph-based model and a differential gene expression approach.