Cargando…
PHEVIR: an artificial intelligence algorithm that predicts the molecular role of pathogens in complex human diseases
Infectious diseases are known to cause a wide variety of post-infection complications. However, it’s been challenging to identify which diseases are most associated with a given pathogen infection. Using the recently developed LeMeDISCO approach that predicts comorbid diseases associated with a give...
Autores principales: | Zhou, Hongyi, Astore, Courtney, Skolnick, Jeffrey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719543/ https://www.ncbi.nlm.nih.gov/pubmed/36463386 http://dx.doi.org/10.1038/s41598-022-25412-x |
Ejemplares similares
-
LeMeDISCO is a computational method for large-scale prediction & molecular interpretation of disease comorbidity
por: Astore, Courtney, et al.
Publicado: (2022) -
Prediction of severe adverse events, modes of action and drug treatments for COVID-19’s complications
por: Astore, Courtney, et al.
Publicado: (2021) -
ENTPRISE: An Algorithm for Predicting Human Disease-Associated Amino Acid Substitutions from Sequence Entropy and Predicted Protein Structures
por: Zhou, Hongyi, et al.
Publicado: (2016) -
Comprehensive prediction of drug-protein interactions and side effects for the human proteome
por: Zhou, Hongyi, et al.
Publicado: (2015) -
Implications of
the Essential Role of Small Molecule
Ligand Binding Pockets in Protein–Protein Interactions
por: Skolnick, Jeffrey, et al.
Publicado: (2022)