Cargando…

Association between heme oxygenase one and sepsis development in patients with moderate-to-critical COVID-19: a single-center, retrospective observational study

BACKGROUND: Heme oxygenase one (HO-1) is considered a poor prognostic factor for survival in patients with severe-to-critical coronavirus disease (COVID-19), but the clinical correlation between heme catabolism biomarkers and COVID-19-related sepsis is unknown. The etiopathogenetic hypothesis of HO-...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Hsin-Yi, Tzeng, I-Shiang, Tsai, Kuo-Wang, Wu, Yao-Kuang, Cheng, Ching-Feng, Lu, Kuo-Cheng, Chung, Hsueh-Wen, Chao, You-Chen, Su, Wen-Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719614/
https://www.ncbi.nlm.nih.gov/pubmed/36464717
http://dx.doi.org/10.1186/s40001-022-00915-5
Descripción
Sumario:BACKGROUND: Heme oxygenase one (HO-1) is considered a poor prognostic factor for survival in patients with severe-to-critical coronavirus disease (COVID-19), but the clinical correlation between heme catabolism biomarkers and COVID-19-related sepsis is unknown. The etiopathogenetic hypothesis of HO-1 response during sepsis in patients with poor prognosis should be clarified. This study aimed to investigate sepsis development within 48 h following moderate-to-critical COVID-19 and examined heme/HO-1 catabolism biomarkers associated with sepsis. We also studied the HO-1 and traditional prognostic factors for predicting survival in patients with COVID-19. METHODS: This retrospective observational study included patients unvaccinated for COVID-19 with moderate-to-critical COVID-19 (n = 156) who had been admitted to Taipei Tzu Chi Hospital in 2021. All COVID-19 patients were diagnosed by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcriptase polymerase chain reaction. For analysis of heme catabolism in SARS-CoV-2-induced sepsis, we excluded patients with co-infection and severe anemia. Heme catabolism biomarkers were compared between groups of patients with COVID-19 and sepsis (sepsis) and those with COVID-19 without sepsis (no sepsis), and a control group comprising 100 healthy individuals. All clinical and laboratory data were collected retrospectively and blood specimens were collected from Biobank. Multivariable logistic regression analysis was used to compare all variables between the sepsis and no-sepsis groups. Cox regression analysis was used to determine predictors of survival in patients with COVID-19. RESULTS: There were 71 and 85 patients with and without sepsis, respectively. Heme and HO-1 levels differed significantly between the sepsis, no sepsis, and control groups. In multivariate analysis, confusion, blood urea nitrogen, respiration, blood pressure in patients aged > 65 years (CURB-65) (adjusted odds ratio [aOR] 5.331, 95% confidence interval [CI] 2.587–10.987; p < 0.001), albumin (aOR 0.139, 95% CI 0.003–0.636; p = 0.01), d-dimer (aOR 1.001, 95% CI 1.000–1.002; p = 0.032), and HO-1 (aOR 1.116, 95% CI 1.055–1.180; p < 0.001) were significantly associated with 48-h sepsis episodes after adjusting for other confounding factors. HO-1 levels were also significantly associated with 48-h Sequential Organ Failure Assessment Score (SOFA) scores. However, HO-1 did not significantly increase the hazard of in-hospital mortality in moderate-to-critical COVID-19 by Cox regression analysis. CONCLUSIONS: HO-1 levels increased with sepsis development within 48 h of admission for COVID-19 after adjusting for other risk factors, but no significant association was observed between HO-1 and COVID-19 mortality. We suppose that HO-1 may have protective effect in early sepsis, but further clinical multicenter prospective studies are needed.