Cargando…
Performing a shortened version of the Action Research Arm Test in immersive virtual reality to assess post-stroke upper limb activity
BACKGROUND: To plan treatment and measure post-stroke recovery, frequent and time-bounded functional assessments are recommended. With increasing needs for neurorehabilitation advances, new technology based methods, such as virtual reality (VR) have emerged. Here, we developed an immersive VR versio...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719653/ https://www.ncbi.nlm.nih.gov/pubmed/36463219 http://dx.doi.org/10.1186/s12984-022-01114-3 |
_version_ | 1784843371666210816 |
---|---|
author | Burton, Quentin Lejeune, Thierry Dehem, Stéphanie Lebrun, Noémie Ajana, Khawla Edwards, Martin Gareth Everard, Gauthier |
author_facet | Burton, Quentin Lejeune, Thierry Dehem, Stéphanie Lebrun, Noémie Ajana, Khawla Edwards, Martin Gareth Everard, Gauthier |
author_sort | Burton, Quentin |
collection | PubMed |
description | BACKGROUND: To plan treatment and measure post-stroke recovery, frequent and time-bounded functional assessments are recommended. With increasing needs for neurorehabilitation advances, new technology based methods, such as virtual reality (VR) have emerged. Here, we developed an immersive VR version of the Action Research Arm Test (ARAT-VR) to complement neurorehabilitation. OBJECTIVE: This study aimed to assess the validity, usability and test–retest reliability of the ARAT-VR among individuals with stroke, healthcare professionals and healthy control subjects (HCS). METHODS: Among the 19 items of the ARAT, 13 items were selected and developed in immersive VR. 11 healthcare professionals, 30 individuals with stroke, and 25 HCS were recruited. Content validity was assessed by asking healthcare professionals to rate the difficulty of performing each item of the ARAT-VR in comparison to the classical Action Research Arm Test (ARAT-19). Concurrent validity was first measured using correlation (Spearman tests) between the ARAT-VR and ARAT-19 scores for the individuals with stroke, and second through correlation and comparison between the scores of the ARAT-VR and the reduced version of the ARAT (ARAT-13) for both individuals with stroke and HCS (Wilcoxon signed rank tests and Bland–Altman plots). Usability was measured using the System Usability Scale. A part of individuals with stroke and HCS were re-tested following a convenient delay to measure test–retest reliability (Intra-class correlation and Wilcoxon tests). RESULTS: Regarding the content validity, median difficulty of the 13 ARAT-VR items (0[0 to − 1] to 0[0–1]) evaluated by healthcare professionals was rated as equivalent to the classical ARAT for all tasks except those involving the marbles. For these, the difficulty was rated as superior to the real tasks (1[0–1] when pinching with the thumb-index and thumb-middle fingers, and 1[0–2] when pinching with thumb-ring finger). Regarding the concurrent validity, for paretic hand scores, there were strong correlations between the ARAT-VR and ARAT-13 (r = 0.84), and between the ARAT-VR and ARAT-19 (r = 0.83). Usability (SUS = 82.5[75–90]) and test–retest reliability (ICC = 0.99; p < 0.001) were excellent. CONCLUSION: The ARAT-VR is a valid, usable and reliable tool that can be used to assess upper limb activity among individuals with stroke, providing potential to increase assessment frequency, remote evaluation, and improve neurorehabilitation. Trial registrationhttps://clinicaltrials.gov/ct2/show/NCT04694833; Unique identifier: NCT04694833, Date of registration: 11/24/2020. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12984-022-01114-3. |
format | Online Article Text |
id | pubmed-9719653 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-97196532022-12-05 Performing a shortened version of the Action Research Arm Test in immersive virtual reality to assess post-stroke upper limb activity Burton, Quentin Lejeune, Thierry Dehem, Stéphanie Lebrun, Noémie Ajana, Khawla Edwards, Martin Gareth Everard, Gauthier J Neuroeng Rehabil Research BACKGROUND: To plan treatment and measure post-stroke recovery, frequent and time-bounded functional assessments are recommended. With increasing needs for neurorehabilitation advances, new technology based methods, such as virtual reality (VR) have emerged. Here, we developed an immersive VR version of the Action Research Arm Test (ARAT-VR) to complement neurorehabilitation. OBJECTIVE: This study aimed to assess the validity, usability and test–retest reliability of the ARAT-VR among individuals with stroke, healthcare professionals and healthy control subjects (HCS). METHODS: Among the 19 items of the ARAT, 13 items were selected and developed in immersive VR. 11 healthcare professionals, 30 individuals with stroke, and 25 HCS were recruited. Content validity was assessed by asking healthcare professionals to rate the difficulty of performing each item of the ARAT-VR in comparison to the classical Action Research Arm Test (ARAT-19). Concurrent validity was first measured using correlation (Spearman tests) between the ARAT-VR and ARAT-19 scores for the individuals with stroke, and second through correlation and comparison between the scores of the ARAT-VR and the reduced version of the ARAT (ARAT-13) for both individuals with stroke and HCS (Wilcoxon signed rank tests and Bland–Altman plots). Usability was measured using the System Usability Scale. A part of individuals with stroke and HCS were re-tested following a convenient delay to measure test–retest reliability (Intra-class correlation and Wilcoxon tests). RESULTS: Regarding the content validity, median difficulty of the 13 ARAT-VR items (0[0 to − 1] to 0[0–1]) evaluated by healthcare professionals was rated as equivalent to the classical ARAT for all tasks except those involving the marbles. For these, the difficulty was rated as superior to the real tasks (1[0–1] when pinching with the thumb-index and thumb-middle fingers, and 1[0–2] when pinching with thumb-ring finger). Regarding the concurrent validity, for paretic hand scores, there were strong correlations between the ARAT-VR and ARAT-13 (r = 0.84), and between the ARAT-VR and ARAT-19 (r = 0.83). Usability (SUS = 82.5[75–90]) and test–retest reliability (ICC = 0.99; p < 0.001) were excellent. CONCLUSION: The ARAT-VR is a valid, usable and reliable tool that can be used to assess upper limb activity among individuals with stroke, providing potential to increase assessment frequency, remote evaluation, and improve neurorehabilitation. Trial registrationhttps://clinicaltrials.gov/ct2/show/NCT04694833; Unique identifier: NCT04694833, Date of registration: 11/24/2020. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12984-022-01114-3. BioMed Central 2022-12-03 /pmc/articles/PMC9719653/ /pubmed/36463219 http://dx.doi.org/10.1186/s12984-022-01114-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Burton, Quentin Lejeune, Thierry Dehem, Stéphanie Lebrun, Noémie Ajana, Khawla Edwards, Martin Gareth Everard, Gauthier Performing a shortened version of the Action Research Arm Test in immersive virtual reality to assess post-stroke upper limb activity |
title | Performing a shortened version of the Action Research Arm Test in immersive virtual reality to assess post-stroke upper limb activity |
title_full | Performing a shortened version of the Action Research Arm Test in immersive virtual reality to assess post-stroke upper limb activity |
title_fullStr | Performing a shortened version of the Action Research Arm Test in immersive virtual reality to assess post-stroke upper limb activity |
title_full_unstemmed | Performing a shortened version of the Action Research Arm Test in immersive virtual reality to assess post-stroke upper limb activity |
title_short | Performing a shortened version of the Action Research Arm Test in immersive virtual reality to assess post-stroke upper limb activity |
title_sort | performing a shortened version of the action research arm test in immersive virtual reality to assess post-stroke upper limb activity |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719653/ https://www.ncbi.nlm.nih.gov/pubmed/36463219 http://dx.doi.org/10.1186/s12984-022-01114-3 |
work_keys_str_mv | AT burtonquentin performingashortenedversionoftheactionresearcharmtestinimmersivevirtualrealitytoassesspoststrokeupperlimbactivity AT lejeunethierry performingashortenedversionoftheactionresearcharmtestinimmersivevirtualrealitytoassesspoststrokeupperlimbactivity AT dehemstephanie performingashortenedversionoftheactionresearcharmtestinimmersivevirtualrealitytoassesspoststrokeupperlimbactivity AT lebrunnoemie performingashortenedversionoftheactionresearcharmtestinimmersivevirtualrealitytoassesspoststrokeupperlimbactivity AT ajanakhawla performingashortenedversionoftheactionresearcharmtestinimmersivevirtualrealitytoassesspoststrokeupperlimbactivity AT edwardsmartingareth performingashortenedversionoftheactionresearcharmtestinimmersivevirtualrealitytoassesspoststrokeupperlimbactivity AT everardgauthier performingashortenedversionoftheactionresearcharmtestinimmersivevirtualrealitytoassesspoststrokeupperlimbactivity |