Cargando…
Quantum adiabatic theorem for unbounded Hamiltonians with a cutoff and its application to superconducting circuits
We present a new quantum adiabatic theorem that allows one to rigorously bound the adiabatic timescale for a variety of systems, including those described by originally unbounded Hamiltonians that are made finite-dimensional by a cutoff. Our bound is geared towards the qubit approximation of superco...
Autores principales: | Mozgunov, Evgeny, Lidar, Daniel A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719797/ https://www.ncbi.nlm.nih.gov/pubmed/36463925 http://dx.doi.org/10.1098/rsta.2021.0407 |
Ejemplares similares
-
Hamiltonian transformability, fast adiabatic dynamics and hidden adiabaticity
por: Wu, Lian-Ao, et al.
Publicado: (2021) -
Discrete time adiabatic theorems for quantum mechanical systems
por: Dranov, A, et al.
Publicado: (1997) -
Multiphase averaging for classical systems: with applications to adiabatic theorems
por: Lochak, Pierre, et al.
Publicado: (1988) -
Adiabatic theory for slowly varying Hamiltonian systems with applications to beam dynamics
por: Capoani, Federico
Publicado: (2020) -
A superconducting adiabatic neuron in a quantum regime
por: Bastrakova, Marina V, et al.
Publicado: (2022)