Cargando…

Characterization of Pseudomonas sp. NIBR-H-19, an Antimicrobial Secondary Metabolite Producer Isolated from the Gut of Korean Native Sea Roach, Ligia exotica

The need to discover new types of antimicrobial agents has grown since the emergence of antibiotic-resistant pathogens that threaten human health. The world’s oceans, comprising complex niches of biodiversity, are a promising environment from which to extract new antibiotics-like compounds. In this...

Descripción completa

Detalles Bibliográficos
Autores principales: Hwang, Sungmin, Yang, Jun Hyeok, Sim, Ho Seok, Choi, Sung Ho, Lee, Byounghee, Bang, Woo Young, Moon, Ki Hwan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society for Microbiology and Biotechnology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9720083/
https://www.ncbi.nlm.nih.gov/pubmed/36310358
http://dx.doi.org/10.4014/jmb.2208.08043
Descripción
Sumario:The need to discover new types of antimicrobial agents has grown since the emergence of antibiotic-resistant pathogens that threaten human health. The world’s oceans, comprising complex niches of biodiversity, are a promising environment from which to extract new antibiotics-like compounds. In this study, we newly isolated Pseudomonas sp. NIBR-H-19 from the gut of the sea roach Ligia exotica and present both phenotypes and genomic information consisting of 6,184,379 bp in a single chromosome possessing a total of 5,644 protein-coding genes. Genomic analysis of the isolated species revealed that numerous genes involved in antimicrobial secondary metabolites are predicted throughout the whole genome. Moreover, our analysis showed that among twenty-five pathogenic bacteria, the growth of three pathogens, including Staphylococcus aureus, Streptococcus hominis and Rhodococcus equi, was significantly inhibited by the culture of Pseudomonas sp. NIBR-H-19. The characterization of marine microorganisms with biochemical assays and genomics tools will help uncover the biosynthesis and action mechanism of antimicrobial metabolites for development as antagonistic probiotics against fish pathogens in an aquatic culture system.