Cargando…

Inactivation of BoORP3a, an oxysterol-binding protein, causes a low wax phenotype in ornamental kale

Identifying genes associated with wax deposition may contribute to the genetic improvement of ornamental kale. Here, we characterized a candidate gene for wax contents, BoORP3a, encoding an oxysterol-binding protein. We sequenced the BoORP3a gene and coding sequence from the high-wax line S0835 and...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Simeng, Zhou, Fuhui, Liu, Zheng, Feng, Xin, Li, Yashu, Zhu, Pengfang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9720449/
https://www.ncbi.nlm.nih.gov/pubmed/36479583
http://dx.doi.org/10.1093/hr/uhac219
Descripción
Sumario:Identifying genes associated with wax deposition may contribute to the genetic improvement of ornamental kale. Here, we characterized a candidate gene for wax contents, BoORP3a, encoding an oxysterol-binding protein. We sequenced the BoORP3a gene and coding sequence from the high-wax line S0835 and the low-wax line F0819, which revealed 12 single nucleotide polymorphisms between the two lines, of which six caused five amino acids substitutions. BoORP3a appeared to be relatively well conserved in Brassicaceae, as determined by a phylogenetic analysis, and localized to the endoplasmic reticulum and the nucleus. To confirm the role of BoORP3a in wax deposition, we generated three orp3a mutants in a high-wax kale background via CRISPR/Cas9-mediated genome editing. Importantly, all three mutants exhibited lower wax contents and glossy leaves. Overall, these data suggest that BoORP3a may participate in cuticular wax deposition in ornamental kale.