Cargando…
A dataset of color QR codes generated using back-compatible and random colorization algorithms exposed to different illumination-capture channel conditions
Color QR Codes are often generated to encode digital information, but one also could use colors or to allocate colors in a QR Code to act as a color calibration chart. In this dataset, we present several thousand QR Codes images generated with two different colorization algorithms (random and back-c...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9720510/ https://www.ncbi.nlm.nih.gov/pubmed/36478685 http://dx.doi.org/10.1016/j.dib.2022.108780 |
Sumario: | Color QR Codes are often generated to encode digital information, but one also could use colors or to allocate colors in a QR Code to act as a color calibration chart. In this dataset, we present several thousand QR Codes images generated with two different colorization algorithms (random and back-compatible) and several tuning variables in these color encoding. The QR Codes were also exposed to three different channel conditions (empty, augmentation and real-life). Also, we derive the SNR and BER computations for these QR Code in comparison with their black and white versions. Finally, we also show if ZBar, a commercial QR Code scanner, is able to read them. |
---|