Cargando…
Amyloid adhesin production in activated sludge is enhanced in lab-scale sequencing batch reactors: Feeding regime impacts microbial community and amyloid distribution
Amyloid adhesins are β-sheet-rich extracellular proteins thought to contribute to bioflocculation. They are present in activated sludge to varying extent. However, it remains unclear which operational conditions promote their production. To this end, the abundance and distribution of amyloids and th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9720597/ https://www.ncbi.nlm.nih.gov/pubmed/36479239 http://dx.doi.org/10.1016/j.wroa.2022.100162 |
_version_ | 1784843592756363264 |
---|---|
author | Christiaens, An-Sofie Van Steenkiste, Manon Rummens, Koen Smets, Ilse |
author_facet | Christiaens, An-Sofie Van Steenkiste, Manon Rummens, Koen Smets, Ilse |
author_sort | Christiaens, An-Sofie |
collection | PubMed |
description | Amyloid adhesins are β-sheet-rich extracellular proteins thought to contribute to bioflocculation. They are present in activated sludge to varying extent. However, it remains unclear which operational conditions promote their production. To this end, the abundance and distribution of amyloids and their potential producers were monitored in two lab-scale reactors operated in sequencing batch mode with an unaerated and aerated reaction phase. Various feeding regimes ranging from feast-famine to nearly continuous feeding were applied. Thioflavin T staining revealed more amyloids in the lab-scale reactors during all operational stages compared to the full-scale industrial and municipal inocula. Furthermore, the feeding regime impacted the distribution of produced amyloids from dense clusters during feast-famine conditions towards a dispersed distribution during nearly continuous feeding. This dispersed presence did not negatively impact the bioflocculation (towards average floc size and shear sensitivity). 16S rRNA sequencing detected several known EPS and amyloid producers. More continuous and, hence, partially aerobic feeding promoted the relative abundance of denitrifiers. Sequential Thioflavin T staining and fluorescence in situ hybridization identified Zoogloea and Ca. Competibacter as potential amyloid producers under the applied conditions. This experiment confirms that amyloid producers need to be triggered for production and that the feeding regime impacts the microbial community composition, which in turn influences the amyloid production and distribution. |
format | Online Article Text |
id | pubmed-9720597 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-97205972022-12-06 Amyloid adhesin production in activated sludge is enhanced in lab-scale sequencing batch reactors: Feeding regime impacts microbial community and amyloid distribution Christiaens, An-Sofie Van Steenkiste, Manon Rummens, Koen Smets, Ilse Water Res X Full Paper Amyloid adhesins are β-sheet-rich extracellular proteins thought to contribute to bioflocculation. They are present in activated sludge to varying extent. However, it remains unclear which operational conditions promote their production. To this end, the abundance and distribution of amyloids and their potential producers were monitored in two lab-scale reactors operated in sequencing batch mode with an unaerated and aerated reaction phase. Various feeding regimes ranging from feast-famine to nearly continuous feeding were applied. Thioflavin T staining revealed more amyloids in the lab-scale reactors during all operational stages compared to the full-scale industrial and municipal inocula. Furthermore, the feeding regime impacted the distribution of produced amyloids from dense clusters during feast-famine conditions towards a dispersed distribution during nearly continuous feeding. This dispersed presence did not negatively impact the bioflocculation (towards average floc size and shear sensitivity). 16S rRNA sequencing detected several known EPS and amyloid producers. More continuous and, hence, partially aerobic feeding promoted the relative abundance of denitrifiers. Sequential Thioflavin T staining and fluorescence in situ hybridization identified Zoogloea and Ca. Competibacter as potential amyloid producers under the applied conditions. This experiment confirms that amyloid producers need to be triggered for production and that the feeding regime impacts the microbial community composition, which in turn influences the amyloid production and distribution. Elsevier 2022-11-28 /pmc/articles/PMC9720597/ /pubmed/36479239 http://dx.doi.org/10.1016/j.wroa.2022.100162 Text en © 2022 The Authors. Published by Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Full Paper Christiaens, An-Sofie Van Steenkiste, Manon Rummens, Koen Smets, Ilse Amyloid adhesin production in activated sludge is enhanced in lab-scale sequencing batch reactors: Feeding regime impacts microbial community and amyloid distribution |
title | Amyloid adhesin production in activated sludge is enhanced in lab-scale sequencing batch reactors: Feeding regime impacts microbial community and amyloid distribution |
title_full | Amyloid adhesin production in activated sludge is enhanced in lab-scale sequencing batch reactors: Feeding regime impacts microbial community and amyloid distribution |
title_fullStr | Amyloid adhesin production in activated sludge is enhanced in lab-scale sequencing batch reactors: Feeding regime impacts microbial community and amyloid distribution |
title_full_unstemmed | Amyloid adhesin production in activated sludge is enhanced in lab-scale sequencing batch reactors: Feeding regime impacts microbial community and amyloid distribution |
title_short | Amyloid adhesin production in activated sludge is enhanced in lab-scale sequencing batch reactors: Feeding regime impacts microbial community and amyloid distribution |
title_sort | amyloid adhesin production in activated sludge is enhanced in lab-scale sequencing batch reactors: feeding regime impacts microbial community and amyloid distribution |
topic | Full Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9720597/ https://www.ncbi.nlm.nih.gov/pubmed/36479239 http://dx.doi.org/10.1016/j.wroa.2022.100162 |
work_keys_str_mv | AT christiaensansofie amyloidadhesinproductioninactivatedsludgeisenhancedinlabscalesequencingbatchreactorsfeedingregimeimpactsmicrobialcommunityandamyloiddistribution AT vansteenkistemanon amyloidadhesinproductioninactivatedsludgeisenhancedinlabscalesequencingbatchreactorsfeedingregimeimpactsmicrobialcommunityandamyloiddistribution AT rummenskoen amyloidadhesinproductioninactivatedsludgeisenhancedinlabscalesequencingbatchreactorsfeedingregimeimpactsmicrobialcommunityandamyloiddistribution AT smetsilse amyloidadhesinproductioninactivatedsludgeisenhancedinlabscalesequencingbatchreactorsfeedingregimeimpactsmicrobialcommunityandamyloiddistribution |