Cargando…
Microorganisms Capable of Producing Polysaccharides from D-Xylose
In recent years, the importance of biomass utilization has increased, but it has not been effectively exploited. In particular, it is difficult to use hemicellulose, the second most abundant biopolymer of biomass. Therefore, in order to promote the utilization of hemicellulose, we screened for micro...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Japanese Society of Applied Glycoscience
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9720630/ https://www.ncbi.nlm.nih.gov/pubmed/36531694 http://dx.doi.org/10.5458/jag.jag.JAG-2022_0008 |
Sumario: | In recent years, the importance of biomass utilization has increased, but it has not been effectively exploited. In particular, it is difficult to use hemicellulose, the second most abundant biopolymer of biomass. Therefore, in order to promote the utilization of hemicellulose, we screened for microorganisms capable of producing polysaccharides from D-xylose. The following four strains were selected from samples collected from various regions of Okinawa Prefecture: Kosakonia sp. (SO_001), Papiliotrema terrestris (SO_005), Pseudarthrobacter sp. (SO_006), and Williamsia sp. (SO_009). Observation with a scanning electron microscope (SEM) confirmed that each bacterium produced polysaccharides with different shapes. In addition, the molecular weight and sugar composition of the polysaccharides produced by each bacterium were distinct. The selected microorganisms include closely related species known to promote plant growth and known to suppress postharvest pathogens. Since these microorganisms may be used not only in known fields but also in new fields, the results of this research are expected to greatly expand the uses of hemicellulose. |
---|