Cargando…
Characterization of the Interactions between Cereal Flour and “Nata Puree” in Batter
This study aimed to characterize the interactions between cereal flour (rice, wheat, and barley) and “nata puree” (NP), a disintegrated bacterial cellulose (BC) in the presence of a water-soluble polysaccharide, with powder-dispersion activity. Pasting properties of cereal flour with additives were...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Japanese Society of Applied Glycoscience
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9720633/ https://www.ncbi.nlm.nih.gov/pubmed/36531691 http://dx.doi.org/10.5458/jag.jag.JAG-2022_0007 |
_version_ | 1784843600077520896 |
---|---|
author | Tokuyasu, Ken Matsuki, Junko Yamagishi, Kenji Ike, Masakazu |
author_facet | Tokuyasu, Ken Matsuki, Junko Yamagishi, Kenji Ike, Masakazu |
author_sort | Tokuyasu, Ken |
collection | PubMed |
description | This study aimed to characterize the interactions between cereal flour (rice, wheat, and barley) and “nata puree” (NP), a disintegrated bacterial cellulose (BC) in the presence of a water-soluble polysaccharide, with powder-dispersion activity. Pasting properties of cereal flour with additives were analyzed using a Rapid Visco Analyzer, and disintegrated BC in water (BCW), three water-soluble polysaccharides: (1,3)(1,4)-β-glucan, tamarind seed gum, and birchwood xylan, and the corresponding NPs were used as additives. For rice flour, additional BCW or NPs increased the initial and the peak viscosity. The addition of water-soluble polysaccharides produced the opposite trend: viscosity increased from the peak time to the end of measurements. For wheat flour, the addition of BCW or NP delayed the peak time and increased peak viscosity; the increase was maintained till the end of measurements. For barley flour, the additional BCW or NP caused a higher gelatinization rate and increased viscosity at the starch-retrogradation stage. Next, static gelatinization of a rice flour suspension in NP was successfully accomplished before placing it in a vessel; NP concentration in the gel significantly affected the firmness. Thus, the dynamic and unique interactions between various cereal flours and cell-wall polysaccharides in NPs can increase the flours' potential; static gelatinization of cereal flour with NP could expand flours' application range in both current and next-generation cooking. |
format | Online Article Text |
id | pubmed-9720633 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Japanese Society of Applied Glycoscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-97206332022-12-15 Characterization of the Interactions between Cereal Flour and “Nata Puree” in Batter Tokuyasu, Ken Matsuki, Junko Yamagishi, Kenji Ike, Masakazu J Appl Glycosci (1999) Regular Paper This study aimed to characterize the interactions between cereal flour (rice, wheat, and barley) and “nata puree” (NP), a disintegrated bacterial cellulose (BC) in the presence of a water-soluble polysaccharide, with powder-dispersion activity. Pasting properties of cereal flour with additives were analyzed using a Rapid Visco Analyzer, and disintegrated BC in water (BCW), three water-soluble polysaccharides: (1,3)(1,4)-β-glucan, tamarind seed gum, and birchwood xylan, and the corresponding NPs were used as additives. For rice flour, additional BCW or NPs increased the initial and the peak viscosity. The addition of water-soluble polysaccharides produced the opposite trend: viscosity increased from the peak time to the end of measurements. For wheat flour, the addition of BCW or NP delayed the peak time and increased peak viscosity; the increase was maintained till the end of measurements. For barley flour, the additional BCW or NP caused a higher gelatinization rate and increased viscosity at the starch-retrogradation stage. Next, static gelatinization of a rice flour suspension in NP was successfully accomplished before placing it in a vessel; NP concentration in the gel significantly affected the firmness. Thus, the dynamic and unique interactions between various cereal flours and cell-wall polysaccharides in NPs can increase the flours' potential; static gelatinization of cereal flour with NP could expand flours' application range in both current and next-generation cooking. The Japanese Society of Applied Glycoscience 2022-11-20 /pmc/articles/PMC9720633/ /pubmed/36531691 http://dx.doi.org/10.5458/jag.jag.JAG-2022_0007 Text en 2022 by The Japanese Society of Applied Glycoscience https://creativecommons.org/licenses/by-nc/4.0/This is an open-access paper distributed under the terms of the Creative Commons Attribution Non-Commercial (by-nc) License (CC-BY-NC4.0: https://creativecommons.org/licenses/by-nc/4.0/). |
spellingShingle | Regular Paper Tokuyasu, Ken Matsuki, Junko Yamagishi, Kenji Ike, Masakazu Characterization of the Interactions between Cereal Flour and “Nata Puree” in Batter |
title | Characterization of the Interactions between Cereal Flour and “Nata Puree” in Batter |
title_full | Characterization of the Interactions between Cereal Flour and “Nata Puree” in Batter |
title_fullStr | Characterization of the Interactions between Cereal Flour and “Nata Puree” in Batter |
title_full_unstemmed | Characterization of the Interactions between Cereal Flour and “Nata Puree” in Batter |
title_short | Characterization of the Interactions between Cereal Flour and “Nata Puree” in Batter |
title_sort | characterization of the interactions between cereal flour and “nata puree” in batter |
topic | Regular Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9720633/ https://www.ncbi.nlm.nih.gov/pubmed/36531691 http://dx.doi.org/10.5458/jag.jag.JAG-2022_0007 |
work_keys_str_mv | AT tokuyasuken characterizationoftheinteractionsbetweencerealflourandnatapureeinbatter AT matsukijunko characterizationoftheinteractionsbetweencerealflourandnatapureeinbatter AT yamagishikenji characterizationoftheinteractionsbetweencerealflourandnatapureeinbatter AT ikemasakazu characterizationoftheinteractionsbetweencerealflourandnatapureeinbatter |